作物学报 ›› 2013, Vol. 39 ›› Issue (05): 789-805.doi: 10.3724/SP.J.1006.2013.00789
朱斌1,2,3,**,陆俊杏1,2,3,**,彭茜1,2,3,翁昌梅1,2,3,王淑文1,2,3,余浩1,2,3,李加纳1,2,3,卢坤1,2,3,*,梁颖1,2,3,*
ZHU Bin1,2,3,**,LU Jun-Xing1,2,3,**,PENG Qian1,2,3,WENG Chang-Mei1,2,3,WANG Shu-Wen1,2,3,YU Hao1,2,3,LI Jia-Na1,2,3,LU Kun1,2,3,*,LIANG Ying1,2,3,*
摘要:
从甘蓝型油菜中克隆了MAPK7基因家族3个成员BnMAPK7-1、BnMAPK7-2和BnMAPK7-3的全长cDNA序列,它们最长标准mRNA分别为1593、1434和1547 bp。系统进化分析表明,甘蓝型油菜MAPK7基因全部来自白菜,而且BnMAPK7-1/-2的是由白菜Bra03723祖先基因加倍产生的,而BnMAPK7-3则由白菜中Bra037234的祖先基因进化形成的。同时,克隆获得BnMAPK7-1/-2的启动子序列,该启动子里含有多个与光诱导相关的元件、激素响应元件和逆境胁迫响应元件。实时荧光定量PCR (qRT-PCR)显示甘蓝型油菜MAPK7基因家族在所有的组织器官中均表达,并发现该基因家族的表达受植物激素(MeJA、ABA、SA)、信号分子(H2O2)、逆境(高温)以及伤害(损伤和核盘菌)的诱导,初步证明甘蓝型油菜MAPK7基因在植物逆境胁迫应答中起一定作用。实现了甘蓝型油菜MAPK7-1/-3基因的原核表达,并证明它们编码的蛋白主要以包涵体形式存在,为后续的研究提供了基础。
[1]Rohila J S, Yang Y N. Rice mitogen-activated protein kinase gene family and its role in biotic and abiotic stress response. J Integr Plant Biol, 2007, 49: 751–759[2]Jonak C, Okresz L, Bogre L, Hirt H. Complexity, cross talk and integration of plant MAP kinase signalling. Curr Opin Plant Biol, 2002, 5: 415–424[3]Ichimura K, Shinozaki K, Tena G, Sheen J, Henry Y, Champion A, Kreis M, Zhang S Q, Hirt H, Wilson C, Heberle-Bors E, Ellis B E, Morris P C, Innes R W, Ecker J R, Scheel D, Klessig D F, Machida Y, Mundy J, Ohashi Y, Walker J C, Grp M. Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci, 2002, 7: 301–308[4]Decroocqferrant V, Decroocq S, Vanwent J, Schmidt E, Kreis M. A Homolog of the map/erk family of protein-kinase genes is expressed in vegetative and in female reproductive-organs of petunia-hybrida. Plant Mol Biol, 1995; 27: 339–350[5]Mizoguchi T, Hayashida N, Yamaguchishinozaki K, Kamada H, Shinozaki K. Atmpks: a gene family of plant map kinases in Arabidopsis thaliana. Febs Lett, 1993, 336: 440–444[6]Mizoguchi T, Gotoh Y, Nishida E, Yamaguchishinozaki K, Hayashida N, Iwasaki T, Kamada H, Shinozaki K. Characterization of 2 cDNAs that encode map kinase homologs in Arabidopsis thaliana and analysis of the possible role of auxin in activating such kinase-activities in cultured-cells. Plant J, 1994, 5: 111–122[7]Mizoguchi T, Irie K, Hirayama T, Hayashida N, YamaguchiShinozaki K, Matsumoto K, Shinozaki K. A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc Nat Acad Sci USA, 1996, 93: 765–769[8]Wilson C, Eller N, Gartner A, Vicente O, Heberlebors E. Isolation and characterization of a tobacco cdna clone encoding a putative map kinase. Plant Mol Biol, 1993, 23: 543–551[9]Vogel J T, Zarka D G, van Buskirk H A, Fowler S G, Thomashow M F. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J, 2005, 41: 195–211[10]Ortiz-Masia D, Perez-Amador M A, Carbonell J, Marcote M J. Diverse stress signals activate the C1 subgroup MAP kinases of Arabidopsis. FEBS Lett, 2007, 581: 1834–1840[11]Ortiz-Masia D, Perez-Amador M A, Carbonell P, Aniento F, Carbonell J, Marcote M J. Characterization of PsMPK2, the first C1 subgroup MAP kinase from pea (Pisum sativum L.). Planta, 2008, 227: 1333–1342[12]Chen X, Truksa M, Shah S, Weselake R J. A survey of quantitative real-time polymerase chain reaction internal reference genes for expression studies in Brassica napus. Anal Biochem, 2010, 405: 138–140[13]Bustin S A, Benes V, Garson J A, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl M W, Shipley G L, Vandesompele J, Wittwer C T. Primer sequence disclosure: a clarification of the MIQE guidelines. Clin Chem, 2011, 57: 919–921[14]Ding Y(丁勇), Chang W(常玮), Liu X-Z(刘小烛). Molecular cloning, expression vector construction and prokaryotic expression of BnClo1 gene from Brassica napus. Sci Agric Sin (中国农业科学), 2010; 43(2): 252–258 (in Chinese with English abstract) [15]Parkin I A P, Sharpe A G, Lydiate D J. Patterns of genome duplication within the Brassica napus genome. Genome, 2003, 46: 291–303[16]Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger M J, Vincourt P, Blanchard P. Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet, 2005, 111: 1514–1523[17]Inaba R, Nishio T. Phylogenetic analysis of Brassiceae based on the nucleotide sequences of the S-locus related gene, SLR1. Theor Appl Genet, 2002, 105: 1159–1165[18]OECD/GD(97)63. Series on Harmonization of Regulatory Oversight in Biotechnology No.7: Consensus document on the biology of Brassica napus L.(Oilseed rape). Paris: Organisation for Economic Co-Operation and Development, 1997. pp 1–32 (http://www.oecd.org/science/biotrack/27531440. pdf)[19]Lysak M A, Koch M A, Pecinka A, Schubert I. Chromosome triplication found across the tribe Brassiceae. Genome Res, 2005, 15: 516–525[20]Higgins R, Lockwood T, Holley S, Yalamanchili R, Stratmann J W. Changes in extracellular pH are neither required nor sufficient for activation of mitogen-activated protein kinases (MAPKs) in response to systemin and fusicoccin in tomato. Planta, 2007, 225: 1535–1546[21]Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K. Various abiotic stresses vapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J, 2000, 24: 655–665[22]Katou S, Kuroda K, Seo S, Yanagawa Y, Tsuge T, Yamazaki M, Miyao A, Hirochika H, Ohashi Y. A calmodulin-binding mitogen-activated protein kinase phosphatase is induced by wounding and regulates the activities of stress-related mitogen-activated protein kinases in rice. Plant Cell Physiol, 2007, 48: 332–344[23]Usami S, Banno H, Ito Y, Nishihama R, Machida Y. Cutting activates a 46-kilodalton protein-kinase in plants. Proc Nat Acad Sci USA, 1995, 92: 8660–8664[24]Zhang S Q, Klessig D F. The tobacco wounding-activated mitogen-activated protein kinase is encoded by SIPK. Proc Nat Acad Sci USA, 1998, 95: 7225–7230[25]Devoto A, Ellis C, Magusin A, Chang H S, Chilcott C, Zhu T, Turner J G. Expression profiling reveals COI1 to be a key regulator of genes involved in wound- and methyl jasmonate-induced secondary metabolism, defence, and hormone interactions. Plant Mol Biol, 2005, 58: 497–513[26]Leon J, Rojo E, Sanchez-Serrano J J. Wound signalling in plants. J Exp Bot, 2001, 52: 1–9[27]Turner J G, Ellis C, Devoto A. The jasmonate signal pathway. Plant Cell, 2002, 14: S153–S164[28]Yin H(尹恒), Yang J-L(杨金丽), Li S-G(李曙光), Zhao X-M(赵小明), Bai X-F(白雪芳), Ma X-J(马小军), Du Y-G(杜昱光). Cloning and analysis of BnMPK4, a novel MAP kinase gene induced by oligochitosan in Brassica napus. Acta Agron Sin (作物学报), 2008, 34(5): 743−747 (in Chinese with English abstract)[29]Guan L Q M, Zhao J, Scandalios J G. Cis-elements and trans-factors that regulate expression of the maize Cat1 antioxidant gene in response to ABA and osmotic stress: H2O2 is the likely intermediary signaling molecule for the response. Plant J, 2000, 22: 87–95[30]Pei Z M, Murata Y, Benning G, Thomine S, Klusener B, Allen G J, Grill E, Schroeder J I. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature, 2000, 406: 731–734[31]Rojo E, Solano R, Sanchez-Serrano J J. Interactions between signaling compounds involved in plant defense. J Plant Growth Regul, 2003, 22: 82–98[32]Wang Z, Mao H, Dong C H, Ji R Q, Cai L, Fu H, Liu S Y. Overexpression of Brassica napus MPK4 enhances resistance to sclerotinia sclerotiorum in oilseed rape. Mol Plant-Microbe Interact, 2009, 22: 235–244[33]Mishra N S, Tuteja R, Tuteja N. Signaling through MAP kinase networks in plants. Arch Biochem Bioph, 2006, 452: 55–68[34]Nakagami H, Pitzschke A, Hirt H. Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci, 2005, 10: 339–346[34]Zhang T, Liu Y, Yang T, Zhang L, Xu S, Xue L, An L. Diverse signals converge at MAPK cascades in plant. Plant Physiol Biochem, 2006, 44: 274–283[36]Brodersen P, Petersen M, Nielsen H B, Zhu S J, Newman M A, Shokat K M, Rietz S, Parker J, Mundy J. Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant J, 2006, 47: 532–546[37]Kovtun Y, Chiu W L, Tena G, Sheen J. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Nat Acad Sci USA, 2000, 97: 2940–2945[38]Rentel M C, Lecourieux D, Ouaked F, Usher S L, Petersen L, Okamoto H, Knight H, Peck S C, Grierson C S, Hirt H, Knight M R. OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature, 2004, 427: 858–861[39]Yuasa Y, Ichimura K, Mizoguchi T, Shinozaki K. Oxidative stress activates ATMPK6, an Arabidopsis homologue of MAP kinase. Plant Cell Physiol, 2001, 42: 1012–1016[40]Lu C, Han M H, Guevara-Garcia A, Fedoroff N V. Mitogen-activated protein kinase signaling in postgermination arrest of development by abscisic acid. Proc Nat Acad Sci USA, 2002, 99: 15812–15817[41]Pedro A Q, Bonifacio M J, Queiroz J A, Maia C J, Passarinha L A. A novel prokaryotic expression system for biosynthesis of recombinant human membrane-bound catechol-O-methyltransferase. J Biotechnol, 2011, 156: 141–146[42]Liu B Q, Li G X, Sui X W, Yin J, Wang H, Ren X F. Expression and functional analysis of porcine aminopeptidase N produced in prokaryotic expression system. J Biotechnol, 2009, 141: 91–96 |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[3] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[4] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[5] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[6] | 余国武, 青芸, 何珊, 黄玉碧. 玉米SSIIb蛋白多克隆抗体的制备及其应用[J]. 作物学报, 2022, 48(1): 259-264. |
[7] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[8] | 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042. |
[9] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
[10] | 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990. |
[11] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
[12] | 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637. |
[13] | 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659. |
[14] | 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426. |
[15] | 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析[J]. 作物学报, 2021, 47(3): 462-471. |
|