欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (05): 806-815.doi: 10.3724/SP.J.1006.2013.00806

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

棉花转录因子GhGT30基因的克隆及转录功能分析

李月1,2,3,孙杰1,陈受宜2,*,谢宗铭3,*   

  1. 1 石河子大学农学院 / 新疆兵团绿洲生态农业重点实验室,新疆石河子 832003;2 中国科学院遗传与发育生物学研究所 / 国家植物基因组重点实验室,北京 100101;3 新疆农垦科学院 / 分子农业技术育种中心,新疆石河子 832000
  • 收稿日期:2012-09-25 修回日期:2012-12-12 出版日期:2013-05-12 网络出版日期:2013-01-28
  • 通讯作者: 谢宗铭, E-mail: xiezm2008@yahoo.com.cn; Tel: 0993-6683583; 陈受宜, E-mail: sychen@genetics.ac.cn, Tel: 010-64806621
  • 基金资助:

    本研究由国家转基因生物新品种培育科技重大专项(2009ZX08009-090B)项目资助。

Cloning and Transcription Function Analysis of Cotton Transcription Factor GhGT30 Gene

LI Yue1,2,3,SUN Jie1,CHEN Shou-Yi2,*,XIE Zong-Ming3,*   

  1. 1Agricultural college of Shihezi University / The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi 832003, China; 2 National Key Laboratory of Plant Genomics / Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; 3 Xinjiang Academy of Agricultural and Reclamation Science / Center for Molecular Agrobiotechnology and Breeding, Shihezi 832003, China
  • Received:2012-09-25 Revised:2012-12-12 Published:2013-05-12 Published online:2013-01-28
  • Contact: 谢宗铭, E-mail: xiezm2008@yahoo.com.cn; Tel: 0993-6683583; 陈受宜, E-mail: sychen@genetics.ac.cn, Tel: 010-64806621

摘要:

Trihelix转录因子广泛参与植物生长发育、非生物胁迫应答等一系列生理活动。本研究根据表达序列标签(EST)电子拼接,结合cDNA末端快速扩增技术(RACE)RT-PCR技术,从棉花中克隆了一个cDNA全长为2 210 bp基因,其开放读码框为2 025 bp,编码一个675氨基酸的蛋白,分子量约76.26 kD,等电点为6.21SMART蛋白结构预测发现,该基因在N端和C端各有一个trihelix结构域,属于GT-2trihelix转录因子,被命名为GhGT30 (GenBank登录号为JQ013098)。氨基酸序列比对显示,该蛋白和其他高等植物的GT蛋白有较高的同源性。进化树分析表明,GhGT30基因和大豆GmGT-2B基因处在同一进化树分支。拟南芥原生质体中瞬时表达分析表明,GhGT30主要定位于细胞核中。实时荧光定量PCR分析表明,该基因在棉花的花、纤维(12 DPA)中的表达量明显高于根、茎、叶及胚珠(0 DPA),同时,该基因对干旱、高盐、低温及脱落酸(ABA)等处理都有一定程度的响应,推测该基因对棉花非生物胁迫的调控起重要作用。

关键词: trihelix转录因子, 棉花, 非生物胁迫, GhGT30

Abstract:

Trihelix transcription factors play an important role in the regulation of plant growth and development, as well as in their response to many kinds of abiotic stress. According to expressed sequence tag (EST), full-length cDNA sequence of trihelix transcription factor was cloned from upland cotton (Gossypium hirsutum L.) using the methods of rapid-amplification of cDNA ends (RACE) and RT-PCR. Sequence analysis showed that the full-length of GhGT30 (GenBank accession No. JQ013098) was 2210 bp, containing a 2025 bp open reading frame which encoded a protein of 675 amino acids with predicted molecular weight of 76.26 kD and a isoelectric point of 6.21. SMART analysis showed GhGT30 with each trihelix domain at N-terminal and C-terminal, belonging to GT-2-type factors. Amino acid sequence alignment revealed that N-terminal of GhGT30 shared high degree of identity with other higher plant GT proteins. The phylogenetic tree showed that GhGT30 was located at the same branch with GmGT-2B. Transient expression of recombinant plasmid GhGT30/PBI221-GFP in Arabidopsis protoplasts showed that GhGT30 was located in cell nuclei. Real-time quantitative PCR (qPCR) showed that GhGT30 was expressed in a higher level in flower, fiber (12 DPA) than in root, stem leaf, and ovule (0 DPA). The gene was differentially respondes to various abiotic stresses (dehydration, high salinity, and low temperature) and ABA, indicating that it may play important roles in response of cotton plant to abiotic stresses.

Key words: Trihelix transcription factor, Cotton, Abiotic stress, GhGT30

[1]Mittler R. Abiotic stress, the field environment and stress combination. Trends Plant Sci, 2006, 11: 15–19



[2]Riechmann J L, Ratclife O J. A genomic perspective on plant transcription factors. Curr Opin Plant Biol, 2000, 3: 423–434



[3]Chen W J, Zhu T. Networks of transcription factors with roles in environmental stress response. Trends Plant Sci, 2004, 9: 591–596



[4]Riechmann J L, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R, Creelman R, Pilgrim M, Broun P, Zhang J Z, Ghandehari D, Sherman B K, Yu G. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 2000, 290: 2105–2110



[5]Liu Q, Zhang G Y, Chen S Y. Structure and regulatory function of plant transcription factors. Chin Sci Bull, 2001, 45(4): 271–278



[6]Dehesh K, Hung H, Tepperman J M, Quail P H. GT-2: A transcription factor with twin autonomous DNA-binding domains of closely related but different target sequence specificity. EMBO J, 1992, 11: 4131–4144



[7]Zhou D X. Regulatory mechanism of plant gene tranxcription by GT-elemnets and GT-factors. Trends Plant Sci, 1999, 6: 210–214



[8]Green P J, Kay S A, Chua N H. Sequence-specific interactions of a pea nuclear factor with light-responsive elements upstream of the rbcS-3A gene. EMBO J, 1987, 6: 2543–2549



[9]Lawton M A, Dean S M, Dron M, Kooter J M, Kragh K M, Harrison M J, Yu L, Tanguay L, Dixon R A, Lamb C J. Silencer region of a chalcone synthase promoter contains multiple binding sites for a factor, SBF-1, closely related to GT-1. Plant Mol Biol, 1991, 16: 235−249



[10]Park H C, Kim M L, Kang Y H, Jeon J M, Yoo J H, Kim M C, Park CY , Jeong J C, Moon B C, Lee J H, Yoon H W, Lee S H, Chung W S, Lim C O, Lee S Y, Hong J C, Cho M J. Pathogen and NaCl induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol, 2004, 135: 2150−2161



[11]Eyal Y, Curie C, McCormick S. Pollen specificity elements reside in 30 bp of the proximal promoters of two pollen-expressed genes. Plant Cell, 1995, 7: 373−384



[12]Villain P, Clabault G, Macke R, Zhou D X. S1F binding site is related to but different from the light-responsive GT-1 binding site and differentially represses the spinach rpsl promoter in transgenic tobacco. J Biol Chem, 1994, 269: 16626−16630



[13]Villain P, Mache R, Zhou D X. The mechanism of GT element-mediated cell type-specific transcriptional control. J Biol Chem, 1996, 271: 32593−32598



[14]Ayadi M, Delaporte V, Li Y F, Zhou D X. Analysis of GT-3a identifies a distinct subgroup of trihelix DNA-binding transcription factors in Arabidopsis. FEBS Lett, 2004, 562: 147−154



[15]Kuhn R M, Caspar T, Dehesh K, Quail P H. DNA-binding factor GT-2 from Arabidopsis. Plant Mol Biol, 1993, 23: 337−348



[16]Dehesh K, Bruce W B, Quail P H. A trans-acting factor that binds to a GT-motif in phytochrome gene promoter. Science, 1990, 25: 1397−1399



[17]Gilmartin P M, Memelink J, Hiratsuka, Kay S A, Chua N H. Characterization of a gene encoding a DNA binding protein with specificity for a light-responsive element. Plant Cell, 1992, 4: 839–849



[18]Maréchal E, Hiratsuka K, Delgado J, Nairn A, Qin J, Chait B T, Chua N H. Modulation of GT-1 DNA-binding activity by calcium-dependent phosphorylation. Plant Mol Biol, 1990, 40: 373–386



[19]Nagata, T, Niyada E, Fujimoto N, Nagasaki Y, Noto K, Miyanoiri Y, Murata J, Hiratsuka K, Katahira M. Solution structure of the trihelix DNA-binding domains of the wild type and a phosphomimetic mutant of Arabidopsis GT-1: mechanism for an increase in DNA-binding affinity through phosphorylation. Proteins, 2010, 78: 3033–3047



[20]Murata J,Takase H, Hiratsuka K. Characterization of a novel GT-box binding protein from Arabidopsis. Plant Biotechol, 2002, 19: 103–112



[21]Ni M, Dehesh K, Tepperman J M, Quail P H. GT-2: in vivo transcriptional activation activity and definition of novel twin DNA binding domains with reciprocal target sequence selectivity. Plant Cell, 1996, 8: 1041–1059



[22]Griffith M E, Conceicao A S, Smyth D R. PETAL LOSS gene regulates initiation and orientation of second whorl organs in the Arabidopsis flower. Development, 1999, 126: 5635–5644



[23]Brewer P B, Howles P A, Dorian K, Griffith M E, Ishida T, Kaplan-Levy R N, Kilinc A, Smyth D R. PETAL LOSS, a trihelix transcription factor gene, regulates perianth architecture in the Arabidopsis flower. Development, 2004, 131: 4035–4045



[24]Li X, Qin G, Chen Z, Gu H, Qu L J. Again-of-function mutation of transcriptional factor PTL results in curly leaves, dwarfism and male sterility by affecting auxin homeostasis. Plant Mol Biol, 2008, 66: 315–327



[25]Smalle J, Kurepa J, Haeqman M, Gielen J, Van Montagu M, Van Der Straeten S. The trihelix DNA-binding motif in higher plants is not restricted to the transcription factors GT-1 and GT-2. Proc Natl Acad Sci USA, 1998, 95: 3318–3322



[26]Breuer C, Kawamura A, Ichikawa T, Tominaga-Wada R, Wada T, Kondou Y, Muto S, Matsui M, Sugimoto K. The trihelix transcription factor GTL1 regulates ploidy-dependent cell growth in the Arabidopsis trichome. Plant Cell, 2009, 21: 2307–2322



[27]Yoo C Y, Pence H E, Jin J B, Miura K, Gosney M J, Hasegawa P M, Mickelbar M V. The Arabidopsis GTL1 transcription factor regulates water use efficiency and drought tolerance by modulating stomatal density via transrepression of SDD1. Plant Cell, 2010, 22: 4128–4141



[28]Pagnussat G C, Yu H J, Ngo Q A, Rajani S, Mayalagu S, Johnson C S, Capron A, Xie L F, Ye D, Sundaresan V. Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development, 2005, 132: 603–614



[29]Li C, Zhou A, Sang T. Rice domestication by reducing shattering. Science, 2006, 311: 1936–1939



[30]Lin Z W, Griffith M E, Li X R, Zhu Z F, Tan L B, Fu Y C, Zhang W X, Wang X K, Xie D X, Sun C Q. Origin of seed shattering in rice (Oryza sativa L.). Planta, 2007, 226: 11–20



[31]Tzafrir I, Muralla R P, Dickerman A, Berg M, Rogers R, Hutchens S, Sweeney C, McElver J, Aux G, Patton D, Meinke D. Identification of genes required for embryo development in Arabidopsis. Plant Physiol, 2004, 135: 1206–1220



[32]Xie Z M, Zou H F, Lei G, Wei W, Zhou Q Y, Niu C F, Liao Y, Tian A G, Ma B, Zhang W K, Zhang J S, Chen S Y. Soybean Trihelix transcription factors GmGT-2A and GmGT-2B improve plant tolerance to abiotic stresses in transgenic Arabidopsis, PLoS One, 2009, 4: e6898. DOI: 10.1371/journal.pone.0006898



[33]Fang Y, Xie K, Hou X, Hu H, Xiong L. Systematic analysis of GT factor family of rice reveals a novel subfamily involved in stress responses. Mol Genet Genom, 2010, 283: 157–169



[34]Xi J, Qiu Y J, Du L Q, Poovaiah B W. Plant-specific trihelix transcription factor AtGT2L interacts with calcium/calmodulin and responds to cold and salt stresses. Plant Sci, 2012, 185: 274–280



[35]Zhou Q Y, Tian A G, Zou H F, Xie Z M, Lei G, Huang J, Wang H W, Zhang J S, Chen S Y. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J, 2008, 6: 486–503



[36]Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep, 2009, 28: 21–30



[37]Huang B, Jin L G, Liu J Y. Molecular cloning and functional characterization of a DREB1/CBF-like gene (GhDREB1L) from cotton. Sci China C: Life Sci, 2007, 50: 7–14



[38]Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M, Mattana M, Baldoni E, Coraggio I. Overexpression of the rice Osmyb4 gene increase chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J, 2004, 37: 115–127



[39]Hoeren F U, Dolferus R, Wu Y, Peacock W J, Dennis E S. Evidence for a role for AtMYB2 in the induction of the Arabidopsis alcohol dehydrogenase gene (ADH1) by low oxygen. Genetics, 1998, 149: 479– 490



[40]Cominelli E, Galbiati M, Vavasseur A, Conti L, Sala T, Vuylsteke M, Leonhardt N, Dellaporta S L, Tonelli C. A guard-cell- specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr Biol, 2005, 15: 1196–1200



[41]Boulikas T. Putative nuclear localization signals (NLS) in protein transcription factors. J Cell Biochem, 1994, 55: 32–58



[42]Lyck R, Harmening U, Hohfeld L, Treuter E, Scharf K D, Nover L. Intracellular distribution and identification of the nuclear localization signals of two plant heat-stress transcription factors. Planta, 1997, 202: 117–125



[43]Imagawa M, Sakaue R, Tanabe A, Osada S, Nishihara T. Two nuclear localization signals are required for nucluer transcription factors 1-A. FEBS Lett, 2000, 484: 118–124



[44]Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol, 2000, 3: 217–223

[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[5] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[6] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[7] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[8] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[9] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
[10] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[11] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[12] 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649.
[13] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[14] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[15] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!