作物学报 ›› 2013, Vol. 39 ›› Issue (05): 806-815.doi: 10.3724/SP.J.1006.2013.00806
李月1,2,3,孙杰1,陈受宜2,*,谢宗铭3,*
LI Yue1,2,3,SUN Jie1,CHEN Shou-Yi2,*,XIE Zong-Ming3,*
摘要:
[1]Mittler R. Abiotic stress, the field environment and stress combination. Trends Plant Sci, 2006, 11: 15–19[2]Riechmann J L, Ratclife O J. A genomic perspective on plant transcription factors. Curr Opin Plant Biol, 2000, 3: 423–434 [3]Chen W J, Zhu T. Networks of transcription factors with roles in environmental stress response. Trends Plant Sci, 2004, 9: 591–596[4]Riechmann J L, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R, Creelman R, Pilgrim M, Broun P, Zhang J Z, Ghandehari D, Sherman B K, Yu G. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 2000, 290: 2105–2110[5]Liu Q, Zhang G Y, Chen S Y. Structure and regulatory function of plant transcription factors. Chin Sci Bull, 2001, 45(4): 271–278[6]Dehesh K, Hung H, Tepperman J M, Quail P H. GT-2: A transcription factor with twin autonomous DNA-binding domains of closely related but different target sequence specificity. EMBO J, 1992, 11: 4131–4144[7]Zhou D X. Regulatory mechanism of plant gene tranxcription by GT-elemnets and GT-factors. Trends Plant Sci, 1999, 6: 210–214[8]Green P J, Kay S A, Chua N H. Sequence-specific interactions of a pea nuclear factor with light-responsive elements upstream of the rbcS-3A gene. EMBO J, 1987, 6: 2543–2549[9]Lawton M A, Dean S M, Dron M, Kooter J M, Kragh K M, Harrison M J, Yu L, Tanguay L, Dixon R A, Lamb C J. Silencer region of a chalcone synthase promoter contains multiple binding sites for a factor, SBF-1, closely related to GT-1. Plant Mol Biol, 1991, 16: 235−249[10]Park H C, Kim M L, Kang Y H, Jeon J M, Yoo J H, Kim M C, Park CY , Jeong J C, Moon B C, Lee J H, Yoon H W, Lee S H, Chung W S, Lim C O, Lee S Y, Hong J C, Cho M J. Pathogen and NaCl induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol, 2004, 135: 2150−2161[11]Eyal Y, Curie C, McCormick S. Pollen specificity elements reside in 30 bp of the proximal promoters of two pollen-expressed genes. Plant Cell, 1995, 7: 373−384[12]Villain P, Clabault G, Macke R, Zhou D X. S1F binding site is related to but different from the light-responsive GT-1 binding site and differentially represses the spinach rpsl promoter in transgenic tobacco. J Biol Chem, 1994, 269: 16626−16630 [13]Villain P, Mache R, Zhou D X. The mechanism of GT element-mediated cell type-specific transcriptional control. J Biol Chem, 1996, 271: 32593−32598[14]Ayadi M, Delaporte V, Li Y F, Zhou D X. Analysis of GT-3a identifies a distinct subgroup of trihelix DNA-binding transcription factors in Arabidopsis. FEBS Lett, 2004, 562: 147−154 [15]Kuhn R M, Caspar T, Dehesh K, Quail P H. DNA-binding factor GT-2 from Arabidopsis. Plant Mol Biol, 1993, 23: 337−348[16]Dehesh K, Bruce W B, Quail P H. A trans-acting factor that binds to a GT-motif in phytochrome gene promoter. Science, 1990, 25: 1397−1399 [17]Gilmartin P M, Memelink J, Hiratsuka, Kay S A, Chua N H. Characterization of a gene encoding a DNA binding protein with specificity for a light-responsive element. Plant Cell, 1992, 4: 839–849[18]Maréchal E, Hiratsuka K, Delgado J, Nairn A, Qin J, Chait B T, Chua N H. Modulation of GT-1 DNA-binding activity by calcium-dependent phosphorylation. Plant Mol Biol, 1990, 40: 373–386[19]Nagata, T, Niyada E, Fujimoto N, Nagasaki Y, Noto K, Miyanoiri Y, Murata J, Hiratsuka K, Katahira M. Solution structure of the trihelix DNA-binding domains of the wild type and a phosphomimetic mutant of Arabidopsis GT-1: mechanism for an increase in DNA-binding affinity through phosphorylation. Proteins, 2010, 78: 3033–3047[20]Murata J,Takase H, Hiratsuka K. Characterization of a novel GT-box binding protein from Arabidopsis. Plant Biotechol, 2002, 19: 103–112[21]Ni M, Dehesh K, Tepperman J M, Quail P H. GT-2: in vivo transcriptional activation activity and definition of novel twin DNA binding domains with reciprocal target sequence selectivity. Plant Cell, 1996, 8: 1041–1059[22]Griffith M E, Conceicao A S, Smyth D R. PETAL LOSS gene regulates initiation and orientation of second whorl organs in the Arabidopsis flower. Development, 1999, 126: 5635–5644 [23]Brewer P B, Howles P A, Dorian K, Griffith M E, Ishida T, Kaplan-Levy R N, Kilinc A, Smyth D R. PETAL LOSS, a trihelix transcription factor gene, regulates perianth architecture in the Arabidopsis flower. Development, 2004, 131: 4035–4045[24]Li X, Qin G, Chen Z, Gu H, Qu L J. Again-of-function mutation of transcriptional factor PTL results in curly leaves, dwarfism and male sterility by affecting auxin homeostasis. Plant Mol Biol, 2008, 66: 315–327[25]Smalle J, Kurepa J, Haeqman M, Gielen J, Van Montagu M, Van Der Straeten S. The trihelix DNA-binding motif in higher plants is not restricted to the transcription factors GT-1 and GT-2. Proc Natl Acad Sci USA, 1998, 95: 3318–3322 [26]Breuer C, Kawamura A, Ichikawa T, Tominaga-Wada R, Wada T, Kondou Y, Muto S, Matsui M, Sugimoto K. The trihelix transcription factor GTL1 regulates ploidy-dependent cell growth in the Arabidopsis trichome. Plant Cell, 2009, 21: 2307–2322 [27]Yoo C Y, Pence H E, Jin J B, Miura K, Gosney M J, Hasegawa P M, Mickelbar M V. The Arabidopsis GTL1 transcription factor regulates water use efficiency and drought tolerance by modulating stomatal density via transrepression of SDD1. Plant Cell, 2010, 22: 4128–4141[28]Pagnussat G C, Yu H J, Ngo Q A, Rajani S, Mayalagu S, Johnson C S, Capron A, Xie L F, Ye D, Sundaresan V. Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development, 2005, 132: 603–614[29]Li C, Zhou A, Sang T. Rice domestication by reducing shattering. Science, 2006, 311: 1936–1939[30]Lin Z W, Griffith M E, Li X R, Zhu Z F, Tan L B, Fu Y C, Zhang W X, Wang X K, Xie D X, Sun C Q. Origin of seed shattering in rice (Oryza sativa L.). Planta, 2007, 226: 11–20[31]Tzafrir I, Muralla R P, Dickerman A, Berg M, Rogers R, Hutchens S, Sweeney C, McElver J, Aux G, Patton D, Meinke D. Identification of genes required for embryo development in Arabidopsis. Plant Physiol, 2004, 135: 1206–1220[32]Xie Z M, Zou H F, Lei G, Wei W, Zhou Q Y, Niu C F, Liao Y, Tian A G, Ma B, Zhang W K, Zhang J S, Chen S Y. Soybean Trihelix transcription factors GmGT-2A and GmGT-2B improve plant tolerance to abiotic stresses in transgenic Arabidopsis, PLoS One, 2009, 4: e6898. DOI: 10.1371/journal.pone.0006898[33]Fang Y, Xie K, Hou X, Hu H, Xiong L. Systematic analysis of GT factor family of rice reveals a novel subfamily involved in stress responses. Mol Genet Genom, 2010, 283: 157–169[34]Xi J, Qiu Y J, Du L Q, Poovaiah B W. Plant-specific trihelix transcription factor AtGT2L interacts with calcium/calmodulin and responds to cold and salt stresses. Plant Sci, 2012, 185: 274–280[35]Zhou Q Y, Tian A G, Zou H F, Xie Z M, Lei G, Huang J, Wang H W, Zhang J S, Chen S Y. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J, 2008, 6: 486–503[36]Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep, 2009, 28: 21–30[37]Huang B, Jin L G, Liu J Y. Molecular cloning and functional characterization of a DREB1/CBF-like gene (GhDREB1L) from cotton. Sci China C: Life Sci, 2007, 50: 7–14[38]Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M, Mattana M, Baldoni E, Coraggio I. Overexpression of the rice Osmyb4 gene increase chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J, 2004, 37: 115–127[39]Hoeren F U, Dolferus R, Wu Y, Peacock W J, Dennis E S. Evidence for a role for AtMYB2 in the induction of the Arabidopsis alcohol dehydrogenase gene (ADH1) by low oxygen. Genetics, 1998, 149: 479– 490[40]Cominelli E, Galbiati M, Vavasseur A, Conti L, Sala T, Vuylsteke M, Leonhardt N, Dellaporta S L, Tonelli C. A guard-cell- specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr Biol, 2005, 15: 1196–1200[41]Boulikas T. Putative nuclear localization signals (NLS) in protein transcription factors. J Cell Biochem, 1994, 55: 32–58[42]Lyck R, Harmening U, Hohfeld L, Treuter E, Scharf K D, Nover L. Intracellular distribution and identification of the nuclear localization signals of two plant heat-stress transcription factors. Planta, 1997, 202: 117–125 [43]Imagawa M, Sakaue R, Tanabe A, Osada S, Nishihara T. Two nuclear localization signals are required for nucluer transcription factors 1-A. FEBS Lett, 2000, 484: 118–124[44]Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol, 2000, 3: 217–223 |
[1] | 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058. |
[2] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[3] | 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247. |
[4] | 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552. |
[5] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
[6] | 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409. |
[7] | 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689. |
[8] | 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815. |
[9] | 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449. |
[10] | 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623. |
[11] | 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826. |
[12] | 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649. |
[13] | 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671. |
[14] | 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437. |
[15] | 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521. |
|