欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (05): 827-836.doi: 10.3724/SP.J.1006.2013.00827

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦骨干亲本繁6条锈病成株抗性特异位点及其在衍生品种中的遗传解析

陈国跃,刘伟,何员江,苟璐璐,余马,陈时盛,魏育明,郑有良*   

  1. 四川农业大学小麦研究所, 四川成都 611130
  • 收稿日期:2012-11-22 修回日期:2013-01-15 出版日期:2013-05-12 网络出版日期:2013-02-22
  • 通讯作者: 郑有良, E-mail: ylzheng@sicau.edu.cn
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2011CB100100)资助。

Specific Loci for Adult-Plant Resistance to Stripe Rust in Wheat Founder Parent Fan 6 and Their Genetic Dissection in Its Derivatives

CHEN Guo-Yue,LIU Wei,HE Yuan-Jiang,GOU Lu-Lu,YU Ma,CHEN Shi-Sheng,WEI Yu-Ming,ZHENG You-Liang*   

  1. Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
  • Received:2012-11-22 Revised:2013-01-15 Published:2013-05-12 Published online:2013-02-22
  • Contact: 郑有良, E-mail: ylzheng@sicau.edu.cn

摘要:

基于已获得的控制小麦条锈病成株抗性“一致性”QTL区段80SSR标记,结合小麦骨干亲本繁6及其衍生的39个后代小麦品种进行田间条锈病成株期抗性表型鉴定,揭示了骨干亲本繁6遗传物质及其成株抗性在其衍生品种的遗传规律。结果表明,骨干亲本繁6在条锈病条中313233混合生理小种诱导下表现成株抗性,7个衍生后代品种表现全生育期抗性;用控制小麦条锈病成株抗性QTL区段的80SSR标记对繁6及其后代衍生品种的其他亲本进行分子扫描,共发现9个来自繁6基因组的特异SSR标记,即Xwmc631Xgwm359Xwmc407Xgwm501Xgwm148Xgwm539Xgwm533Xgwm299Xgwm639,其中,Xwmc631Xgwm359Xgwm501Xgwm299Xgwm639在繁6衍生后代的4个子代中表现较高的遗传贡献率。以SSR标记与小麦条锈病成株抗性的关联分析发现6SSR标记与小麦条锈病成株抗性显著相关,其中来自繁6的特异SSR等位变异Xgwm539-2DXgwm299-3B与严重度、反应型、普遍率、病情指数及病程曲线下面积(AUDPC)均具显著相关性,表明繁6的成株抗性及其控制遗传位点在其衍生后代品种选育过程中得到了很好的定向选择,并在西南麦区小麦条锈病抗性育种中发挥了重要作用。

关键词: 繁6, 骨干亲本, 条锈病, 成株抗性, 关联分析

Abstract:

Fan 6 is one of the most important founder parents of common wheat in China. The objective of this study was to reveal the genetic structureof Fan 6 and the transmission of its specific loci for adult-plant resistance to stripe rust (Puccinia striiformis f. sp. tritici, Pst) in 39 derivatives.The resistance was evluated using 80 SSR markers assocated with the consensus QTLs for adult-plant resistance to Pstand the phenotypic assessment was conducted at seedling and adult stages after mixed inoculation with Pst races CYR31, CYR32, and CYR33. Fan 6 and seven derivatives showed resistance to Pst in the whole growth stage. Nine SSR allelles, Xwmc631, Xgwm359, Xwmc407, Xgwm501, Xgwm148, Xgwm539, Xgwm533, Xgwm299, and Xgwm639,were identified to be specific to Fan 6, of which Xwmc631, Xgwm359, Xgwm501, Xgwm299, and Xgwm639 exhibited high inheritability in the four derivate generations of Fan 6. The result of markertrait association analysis showed that six SSR loci were significantly correlated with adult-plant resistance to Pst in Fan 6 and its derivatives. Among them, alleles from Fan 6 on lociXgwm539 and Xgwm299 were responsible for disease severity, infection type, incidence, disease index, and area under the disease progress curve (AUDPC). These results indicated that the slow stripe-rusting resistance in Fan 6 has been intensively selected in breeding programs using Fan 6 as the founder parent, which will play an important role in Southwestern wheat area of China.

Key words: Fan 6, Founder parent, Stripe rust, Adult-plant resistance, Association analysis

[1]Zhuang Q-S(庄巧生). 2003. Chinese wheat improvement and pedigree analysis (中国小麦品种改良及系谱分析). Beijing: China Agriculture Press, 2003 (in Chinese)



[2]Zhang X-Y(张学勇), Dong Y-C(董玉琛), You G-X(游光侠), Wang L-F(王兰芬), Li P(李培), Jia J-Z(贾继增). Allelic variation of Glu-A1, Glu-B1 and Glu-D1 in Chinese commercial wheat varieties in the last 50 years. Sci Agric Sin (中国农业科学), 2001, 34(4): 355–362 (in Chinese with English abstract)



[3]Lin F, Xue S L, Zhang Z Z, Kong C Q, Yao Z X, Tian G Q, Zhu D G, Li H L, Cao C J. Mapping QTL associated with resistance to Fusarium head blight in the Nanda 2419 × Wangshuibai population: II. Type I resistance. Theor Appl Genet, 2006, 112: 528–535



[4]Su J Y, Xiao Y M, Li M, Liu Q Y, Li B, Tong Y P, Jia J Z, Li Z S. Mapping QTL for phosphorus-deficiency tolerance at wheat seedling stage. Plant Soil, 2006, 281: 25–36



[5]Wang S-S(王珊珊), Li X-Q(李秀全), Tian J-C(田纪春). Genetic diversity of main parent of wheat ‘Aimengniu’ and its pedigree on SSR markers. Mol Plant Breed (分子植物育种), 2007, 5(4): 485–490 (in Chinese with English abstract)



[6]Li Q(李琼), Wang C-Y(王长有), Liu X-L(刘新伦), Gao D-L(高冬丽), Ji W-Q(吉万全). Genetic diversity of Xiaoyan 6 and its deritives by SSR. J Triticeae Crops (麦类作物学报), 2008, 28(6): 950–955 (in Chinese with English abstract)



[7]Si Q-L(司清林), Liu X-L(刘新伦), Liu Z-K(刘智奎), Wang C-Y(王长有), Ji W-Q(吉万全). SSR analysis of Funo wheat and its derivatives. Acta Agron Sin (作物学报), 2009, 35(4): 615–619 (in Chinese with English abstract)



[8]Li H-Q(李红琴), Xiang J-S(相吉山), Guo Q-Y(郭青云), Yang X-M(杨欣明), Li X-Q(李秀全), Liu W-H(刘伟华), Li L-H(李立会). Analysis of HMW-GS evolution in Funo and its derived varieties. J Plant Genet Resour (植物遗传资源学报), 2009, 10(1): 37–41 (in Chinese with English abstract)



[9]Wang Q-Z(王庆专), Yuan Y-Y(袁园园), Cui F(崔法), Zhao C-H(赵春华), Du B(杜斌), Zhang J-T(张景涛), Wang H-G(王洪刚). Genetic differentiation analysis on the wheat backbone parent Bima No.4 and its four sib-lines. Mol Plant Breed (分子植物育种), 2009, 7(6): 1100–1105 (in Chinese with English abstract)



[10]Zhao C-H(赵春华), Cui F(崔法), Li J(李君), Ding A-M(丁安明), Li X-F(李兴锋), Gao J-R(高居荣), Wang H-G(王洪刚). Genetic difference of siblines derived from winter wheat germplasm “Aimengniu”. Acta Agron Sin (作物学报), 2011, 37(8): 1333–1341 (in Chinese with English abstract)



[11]Li X-J(李小军), Xu X(徐鑫), Liu W-H(刘伟华), Li X-Q(李秀全), Li L-H(李立会). Genetic diversity of the founder parent Orofen and its progenies revealed by SSR markers. Sci Agric Sin (中国农业科学), 2009, 42(10): 3397–3404 (in Chinese with English abstract)



[12]Liu X-L(刘新伦), Wang C-Y(王长有), Wang Y-J(王亚娟), Zhang H(张宏), Ji W-Q(吉万全). Evolution trend of important characters of wheat core parents Funo and its derived varieties. J Northwest A&F Univ (Nat Sci Edn) (西北农林科技大学学报?自然科学版), 2011, 39(1): 96–102 (in Chinese with English abstract)



[13]Li X J, Xu X, Yang X M, Li X Q, Liu W H, Gao A N, Li L H. Genetic diversity among a founder parent and widely grown wheat cultivars derived from the same origin based on morphological traits and microsatellite markers. Crop Pasture Sci, 2012, 63: 303–310



[14]Pestsova E, Röder M. Microsatellite analysis of wheat chromosome 2D allows the reconstruction of chromosomal inheritance in pedigrees of breeding programmes. Theor Appl Genet, 2002, 106: 84–91



[15]Han J(韩俊), Zhang L-S(张连松), Li J-T(李静婷), Shi L-J(石丽娟), Xie C-J(解超杰), You M-S(尤明山), Yang Z-M(杨作民), Liu G-T(刘广田), Sun Q-X(孙其信), Liu Z-Y(刘志勇). Molecular dissections of core parental cross “Triumph/Yanda 1817” and its derivatives in wheat breeding program. Acta Agron Sin (作物学报), 2009, 35(8): 1395–1404 (in Chinese with English abstract)



[16]Xu X(徐鑫), Li X-J(李小军), Li X-Q(李秀全), Yang X-M(杨欣明), Liu W-H(刘伟华), Gao A-N(高爱农), Li L-H(李立会). Inheritance of 1BL/1RS of founder parent Lovrin 10 in its progeny. J Triticeae Crops(麦类作物学报), 2010, 30(2): 221–226 (in Chinese with English abstract)



[17]Yuan Y-Y(袁园园), Wang Q-Z(王庆专), Cui F (崔法), Zhang J-T(张景涛), Du B(杜斌), Wang H-G(王洪刚). Specific loci in genome of wheat milestone parent Bima 4 and their transmission in derivatives. Acta Agron Sin(作物学报), 2010, 36(1): 9–16 (in Chinese with English abstract)



[18]Ma Z Q, Zhao D M, Zhang C Q, Zhang Z Z, Xue S L, Lin F, Kong Z X, Tian D G, Luo Q Y. Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Mol Gen Genomics, 2007, 277: 31 – 42



[19]Xiao Y-G (肖永贵), Yin G-H (殷贵鸿), Li H-H(李慧慧), Xia X-C(夏先春), Yan J(阎俊), Zheng T-C(郑天存), Ji W-Q(吉万全), He Z-H(何中虎). Genetic diversity and genome-wide association analysis of stripe rust resistance among the core wheat parent Zhou 8425B and its derivatives. Sci Agric Sin (中国农业科学), 2011, 44(19): 3919–3929 (in Chinese with English abstract)



[20]Breseghello F, Sorrells M E. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics, 2006, 172: 1165–1177



[21]Breseghello F, Sorrells M E. QTL analysis of kernel size and shape in two hexaploid wheat mapping populations. Field Crops Res, 2007, 101: 172–179



[22]Zhang X-Y(张学勇), Tong Y-P(童依平), You G-X(游光霞), Hao C-Y(郝晨阳), Ge H-M(盖红梅), Wang L-F(王兰芬), Li B (李滨), Dong Y-C(董玉琛), Li Z-S(李振声). Hitchhiking effect mapping: a new approach for discovering agronomic important genes. Sci Agric Sin (中国农业科学), 2006, 39: 1526–1535 (in Chinese with English abstract)



[23]Crossa J, Burgueño J, Dreisigacker S, Vargas M, Herrera-Foessel S A, Lillemo M, Singh R P, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch J H, Ortiz R. Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics, 2007, 177: 1889–1913



[24]Ge H M, You G X, Wang L F, Hao C Y, Dong Y S, Li Z S, Zhang X Y. Genome selection sweep and association analysis shed light on future breeding by design in wheat. Crop Sci, 2012, 52: 1218–1228



[25]Yan J(颜济). History and prospect of study on wheat breeding of fifty years in Sichuan. J Sichuan Agric Univ(四川农业大学学报), 1999, 17(1): 108–113 (in Chinese with English abstract)



[26]Niu Y-C(牛永春), Wu L-R(吴立人). The breakdown of resistance to stripe rust in fan 6-mianyang wheat cultivars and strategies for its control. Acta Phytopathol Sin (植物病理学报), 1997, 27(1): 5–8 (in Chinese with English abstract)



[27]Rao S-D(饶世达), Pu Z-J(蒲宗君), Liu Z-Q(刘仲齐). Review of wheat breeding in Sichuan Province based on the case of two best resources. Southwest China J Agric Sci (西南农业学报), 1998, 11(S2): 35–37 (in Chinese with English abstract)



[28]Johnson R. Chapter 6: Durable resistance to yellow (stripe) rust in wheat and its implications in plant breeding. In: Breeding strategies for resistance to the rusts of wheat. Mexico: CIMMYT, 1988: 63–75



[29]Yang H-A(杨华安), Wu L-R(吴立人), Stubbs R W. The nature of the resistance in Mianyang wheat cultivars to Puccinia striiformis tritici. Sci Agric Sin (中国农业科学), 1990, 23(6): 1–5 (in Chinese with English abstract)



[30]Roelfs S A P, Singh R P, Saari E E. Rust Diseases of Wheat. Mexico, CIMMYT, 1992



[31]Li Z-Q(李振岐), Zeng S-M(曾士迈). Wheat Stripe Rust in China. Beijing: China Agriculture Press, 2002 (in Chinese)



[32]Boukhatem N, Baret P V, Mingeot D, Jacquemin J M. Quantitative trait loci for resistance against Yellow rust in two wheat-derived recombinant inbred line populations. Theor Appl Genet, 2002, 104: 111–118



[33]Sharp P J, Kresis M, Shewry P, Gale M D. Location of beta-amylase sequences in wheat and its relatives. Theor Appl Genet, 1989, 75: 286–290



[34]Devos K M, Alkinson M D, Chinoy C N, Liu C J, Gale M D. RFLP-based genetic map of the homologous group 3 chromosomes of wheat and rye. Theor Appl Genet, 1992, 83: 931–939



[35]Röder M S, Korzun V, Wendehake K, Plaschke J, Tixier M H, Leroy P, Ganal M W. A microsatellite map of wheat. Genetics, 1998, 149: 2007–2023



[36]Pestsova E, Ganal M W, Röder M S. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome, 2000, 43: 689–697



[37]Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 1105–1114



[38]Lu H-P(陆和平), Shang H-S(商鸿生), Li Z-Q(李振岐). Studies on the resistance of Mianyang 11 wheat cultivars to stripe rust of wheat. Acta Univ Agric Boreali-Occident (西北农业大学学报), 1991, 19(suppl): 6–10 (in Chinese with English abstract)



[39]Shang H-S(商鸿生), Lu H-P(陆和平), Li Z-Q(李振岐). The further studies on resistance of wheat variety Mianyang 11 and 15 to stripe rust wheat variety. Acta Agric Boreali-Occident Sin(西北农业学报), 1994, 3(2): 59–62 (in Chinese with English abstract)



[40]Wang F-L(王凤乐), Wu L-R(吴立人), Xu S-C(徐世昌), Jing D-L(金社林), Jia Q-Z(贾秋珍). The discovery and studies on new races CYR30 and CYR31 of wheat stripe rust in China. Acta Phytophyl Sin (植物保护学报), 1996, 23(1): 39–44 (in Chinese with English abstract)



[41]Hao L-P(郝丽萍), Fang Z-F(方之芳), Li Z-L(李子良), Liu Z-Q(刘泽全), He J-H(何金海). The inter-annual climate change and heat island effect of Chengdu during the recent fifty years. Sci Meteorol Sin (气象科学), 2007, 27(6): 648–654 (in Chinese with English abstract)



[42]Dong J-Z(董金琢), Zeng S-M(曾士迈), Ma Q-X(马奇祥). Epidemic processes of wheat yellow rust, leaf rust and powdery mildew when they occur together in the field. Sci Agric Sin (中国农业科学), 1989, 22(3): 67–71 (in Chinese with English abstract)



[43]Jing J-X(井金学), Shang H-S(商鸿生), Li Z-Q(李振岐), Wang M-N(王美南). A preliminary study on the differentiation of the resistance in wheat cultivar to stripe rust (Puccinia striiformis). Acta Phytopathol Sin (植物病理学报), 1997, 27(1): 9–16 (in Chinese with English abstract)



[44]Gupta P K, Rustgi S, Kulwal P L. Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol, 2005, 57: 461–485



[45]Flint-Garcia S A, Thuillet A C, Yu J, Pressoir G, Romero S M, Mitchell S E, Doebley J, Kresovich S, Goodman M M, Buckler E S. Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J, 2005, 44: 1054–1064



[46]Mallard S, Gaudet D, Aldeia A, Abelard C, Besnard A L, Sourdille P, Dedryver F. Genetic analysis of durable resistance to yellow rust in bread wheat. Theor Appl Genet, 2005, 110: 1401–1409



[47]Melichar J P E, Berry S, Newell C, MacCormack R, Boyd L A. QTL identification and microphenotype characterization of the developmentally regulated yellow rust resistance in the UK wheat cultivar Guardian. Theor Appl Genet, 2008, 117: 391–399



[48]Suenaga K, Singh R P, Huerta-Espino J, William H M. Microsatellite markers for genes Lr34/Yr18 and other quantitative trait loci for leaf rust and stripe rust resistance in bread wheat. Phytopathology, 2003, 93: 881–890



[49]Lu Y, Lan C, Liang S, Zhou X, Liu D, Zhou G, Lu Q, Jing J, Wang M, Xia X, He Z. QTL mapping for adult-plant resistance to stripe rust in Italian common wheat cultivars Libellula and Strampelli. Theor Appl Genet, 2009, 119: 1349–1359



[50]Boukhatem N, Baret P V, Mingeot D, Jacquemin J M. Quantitative trait loci for resistance against yellow rust in two wheat-derived recombinant inbred line populations. Theor Appl Genet, 2002, 104: 111–118



[51]Lin F, Chen X M. Quantitative trait loci for non-race-specific, high-temperature adult-plant resistance to stripe rust in wheat cultivar express. Theor Appl Genet, 2009, 118: 631–642



[52]Christiansen M J, Feenstra B, Skovgaard I M, Andersen S B. Genetic analysis of resistance to yellow rust in hexaploid wheat using a mixture model for multiple crosses. Theor Appl Genet, 2006, 112: 581–591

[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564.
[4] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[5] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[6] 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137.
[7] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[8] 于芮苏, 田小康, 刘斌斌, 段迎新, 李婷, 张秀英, 张兴华, 郝引川, 李勤, 薛吉全, 徐淑兔. 玉米抗倒伏相关性状QTL的关联和连锁分析[J]. 作物学报, 2022, 48(1): 138-150.
[9] 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214.
[10] 马娟, 曹言勇, 李会勇. 玉米穗轴粗全基因组关联分析[J]. 作物学报, 2021, 47(7): 1228-1238.
[11] 习玲, 王昱琦, 朱微, 王益, 陈国跃, 蒲宗君, 周永红, 康厚扬. 78份四川小麦育成品种(系)条锈病抗性鉴定与抗条锈病基因分子检测[J]. 作物学报, 2021, 47(7): 1309-1323.
[12] 陈灿, 农保选, 夏秀忠, 张宗琼, 曾宇, 冯锐, 郭辉, 邓国富, 李丹婷, 杨行海. 广西水稻地方品种核心种质稻瘟病抗性位点全基因组关联分析[J]. 作物学报, 2021, 47(6): 1114-1123.
[13] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[14] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
[15] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!