欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (09): 1644-1651.doi: 10.3724/SP.J.1006.2013.01644

• 耕作栽培·生理生化 • 上一篇    下一篇

灌浆期高温胁迫对甜玉米籽粒糖分积累和蔗糖代谢相关酶活性的影响

赵福成1,2,景立权1,闫发宝1,陆大雷1,王桂跃2,陆卫平1,*   

  1. 1 扬州大学江苏省作物遗传生理重点实验室 / 农业部长江中下游作物生理生态与栽培重点开放实验室, 江苏扬州225009;2 浙江省东阳玉米研究所, 浙江东阳322100?
  • 收稿日期:2013-01-08 修回日期:2013-04-22 出版日期:2013-09-12 网络出版日期:2013-07-09
  • 通讯作者: 陆卫平, E-mail: wplu@yzu.edu.cn, Tel: 0514-87979377
  • 基金资助:

    本研究由国家自然科学基金项目(30971731, 31000684, 31271640), 江苏高校优势学科建设工程项目和江苏高校优秀科技创新团队、农业科研杰出人才及其创新团队项目资助。

Effects of Heat Stress During Grain Filling on Sugar Accumulation and Enzyme Activity Associated with Sucrose Metabolism in Sweet Corn

ZHAO Fu-Cheng1,2,JING Li-Quan1,YAN Fa-Bao1,LU Da-Lei1,WANG Gui-Yue2,LU Wei-Ping1,*   

  1. 1 Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Crop Physiology, Ecology and Cultivation in Middle and Lower Reaches of Yangtze River of Ministry of Agriculture, Yangzhou University, Yangzhou 225009, China; 2 Dongyang Institute of Maize Research, Dongyang 322100, China
  • Received:2013-01-08 Revised:2013-04-22 Published:2013-09-12 Published online:2013-07-09
  • Contact: 陆卫平, E-mail: wplu@yzu.edu.cn, Tel: 0514-87979377

摘要:

为明确高温对甜玉米籽粒产量和品质的影响,以甜玉米厦甜1号和粤甜16为材料, 人工授粉3 d, 利用人工气候室分别进行昼间高温(HT)35℃和正常气温(CK)处理, 研究了甜玉米籽粒灌浆过程中粒重、糖分积累和蔗糖代谢相关酶活性的动态变化。结果表明, 与正常气温相比, 高温缩短甜玉米灌浆进程, 显著降低粒重、含水量, 提高皮渣率。在最佳采收期(水分含量为68%~74%)甜玉米鲜百粒重分别下降了20.8% (厦甜1)16.4% (粤甜16)。在甜玉米籽粒灌浆过程中可溶性糖和蔗糖的含量随授粉后时间先升高后降低, 高温处理不利于可溶性糖和蔗糖积累, 籽粒中糖分含量降低, 淀粉含量升高。籽粒中蔗糖的合成与分解主要由磷酸蔗糖合成酶(SPS)和蔗糖合成酶(SS)催化, SS催化反应是可逆的。高温明显降低SPSSS合成方向活性, 提高SS分解方向活性, 导致糖分含量降低, 品质变劣。高温缩短两品种SS(合成方向)活性峰值出现的时间, 而对于SPS活性峰值出现时间厦甜1号被缩短, 粤甜16 为不变。

关键词: 甜玉米, 高温胁迫, 糖分积累, 蔗糖代谢, 酶活性

Abstract:

With the trends of global warming, the extreme high temperature stress often happens during crop grain filling in the world. Heat stress has been an important factor limiting grain yield and quality. To determine the effects of heat stress on fresh kernel yield, quality and enzyme activities of sucrose metabolism, we carried out an experiment was carried out in artificial phytotron using two sweet corn cultivars (Xiatian 1 and Yuetian 16) with two typical temperature treatments (high temperature, HT and control, CK) during grain filling. The results indicated that the growth process of sweet corn was accelerated, but the weight and quality of kernel was decreased seriously under high temperature. The weight of 100-fresh-kernel and kernel water content were markedly reduced, but content of pericarp was increased. At the optimum harvest stage of fresh ear (with kernel water content 68%–74%), the fresh kernel weight of the two cultivars was reduced significantly by 20.8% (Xiatian 1) and 16.4% (Yuetian 16) under higher temperature respectively. The contents of soluble sugar and sucrose first increased and then decreased during the grain filling stage. High temperature was not favorable to sugar accumulation, resulting in sucrose content decrease and starch content increase. Sucrose phosphate synthetase (SPS) and sucrose synthetase (SS) play an important role in sucrose synthesis and degradation. SS catalyzes the interconversion of sucrose. Heat stress decreased the activities of SPS and SS (synthetic) and increased the activity of SS (cleavage), which inevitably leads to a depression in sucrose content and a reduction in kernel quality. The maximum SS (synthetic) activity in process of grain filling of two sweet corns appeared earlier under high temperature, while that of SPS activity appeared earlier in Xiatian 1 and did not in Yuetian 16.

Key words: Sweet corn, Heat stress, Sugar accumulation, ucrose metabolism, Enzyme activity

[1]Sun Z-C(孙政才), Zhang G-P(张国平). Comparative studies on the norm of the variation of carbohydrate and amino acid contents in the developing grains of sweet corn and normal corn (Zea mays L.): I. Grain filling characteristics and the norm of the variation of carbohydrate content. Acta Agron Sin (作物学报), 1992, 18(4): 301–306 (in Chinese with English abstract)



[2]Le S-J(乐菊素), Liu H-C(刘厚诚), Zhang B(张壁), Wang C-M(王晓明). Change of carbohydrate and taste quality in the kernel of super-sweet corn in the milky maturity stage. J South China Agric Univ (华南农业大学学报), 2004, 24(2): 9–11 (in Chinese with English abstract)



[3]Li Y-G(李永庚), Yu Z-W(于振文), Jiang D(姜东), Yu S-L(余松烈). Studies on the dynamic changes of the synthesis of sucrose in the flag leaf and starch in the grain and related enzymes of high-yielding wheat. Acta Agron Sin (作物学报), 2001, 27(5): 658–664 (in Chinese with English abstract)



[4]Qin H-N(覃鸿妮), Cai Y-L(蔡一林), Sun H-Y(孙海燕), Wang J-G(王久光), Wang G-Q(王国强), Liu Z-Z(刘志斋). Effects of planting density on sucrose metabolism and activities of enzymes related to starch synthesis in maize hybrids with different plant types. Chin J Eco-Agric (中国生态农业学报), 2010, 18(6): 1183–1188 (in Chinese with English abstract)



[5]Commuri P D, Jones R J. Ultrastructual characterization of maize (Zea mays L.) kernels exposed to high temperature during endosperm cell division. Plant Cell Environ, 1999, 22: 375–385



[6]Caley C Y, Duftus C M, Jeffcoat B. Effects of elevated temperature and reduced water uptake on enzyme of starch synthesis in developing wheat grains. Aust J Plant Physiol, 1990, 17: 431–439



[7]Jenner C F. Effects of exposure of wheat ears to high temperature on dry matter accumulation and carbohydrate metabolism in the grain of two cultivars: I. Immediate response. Aust J Plant Physiol, 1991, 18: 165–177



[8]Guan H P, Janes H W. Light regulation of sink metabolism in tomato fruit: Ⅱ. Carbohydrate metabolizing enzymes. Plant Physiol, 1991, 96: 922–927



[9]Ahmadi A, Baker D A. The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. Plant Growth Regul, 2001, 35: 81–91



[10]Xu Z-Z(许振柱), Yu Z-W(于振文), Zhang Y-L(张永丽). The effects of soil moisture on grain starch synthesis and accumulation of winter wheat. Acta Agron Sin (作物学报), 2003, 29(4): 595–600 (in Chinese with English abstract)



[11]Cao Y-J(曹玉军), Zhao H-W(赵宏伟), Wang X-H(王晓慧), Wei W-W(魏雯雯), Zhang L(张磊), Wang L-C(王立春), Wang Y-J(王永军). Effects of potassium fertilization on yield, quality and sucrose metabolism of sweet maize. Plant Nutr Fert Sci (植物营养与肥料学报), 2011, 17(4): 881–887 (in Chinese with English abstract)



[12]Ge Q-S(葛全胜), Wang F(王芳), Chen P-Q(陈泮勤), Tian Y-Y(田砚宇), Cheng B-B(程邦波). Review on global change research. Adv Earth Sci (地球科学进展), 2007, 22(4): 417–427 (in Chinese with English abstract)



[13]IPCC. Climate Change 2001—the Scientific Basis. Cambridge, UK: Cambridge University Press, 2001. pp 101–125



[14]Trenberth K E. Atmospheric moisture residence times and cycling: implications for rainfall rates with climate change. Clim Change, 1998, 39: 667–694



[15]Duke E R, Doehlert D C. Effects of heat stress on enzyme activities and transcription levels in developing maize kernels grown in culture. Environ Exp Bot, 1996, 36: 199–208



[16]Labuschagne M T, Elago O, Koen E. The influence of temperature extremes on some quality and starch characteristics in bread, biscuit and durum wheat. J Cereal Sci, 2009, 49: 184–189



[17]Engelen-Eigles G, Jones R J, Phillips R L. DNA endore duplication in maize endosperm cells: I. The effect of exposure to short-term high temperature. Plant Cell Environ, 2000, 23: 657–663



[18]Wallwork M A B, Logue S J, Macleod L C. Effect of high temperature during grain filling on starch synthesis in the developing barley grain. Aust J Plant Physiol, 1998, 25: 173–181



[19]Wilhelm E P, Mullen R E, Keeling P L, Singletary G W. Heat stress during grain filling in maize: effects on kernel growth and metabolism. Crop Sci, 1999, 39: 1733–1741



[20]Liu P(刘萍), Lu W-P(陆卫平), Lu D-L(陆大雷). Quality differences and physicochemical index screening for quality evaluation in waxy corn. J Yangzhou Univ (Agric Life Sci)(扬州大学学报•农业与生命科学版), 2009, 30(3): 16–21(in Chinese with English abstract)



[21]Doehlert D C, Kuo T M, Felker F C. Enzymes of sucrose and hexose metabolism in developing kernels of two inbreeds of maize. Plant Physiol, 1988, 86: 1013–1019



[22]Ou-Lee T M, Setter T L. Effect of increased temperature in apical regions of maize ears on starch-synthesis enzymes and accumulation of sugars and starch. Plant Physiol, 1985, 79: 852–-855



[23]Wardlaw I F. The early stages of grain development in wheat: Response to water stress in a single variety. J Aust Biol Sci, 1971, 24: 1047–1055



[24]Liu S-Y(刘淑云), Dong S-T(董树亭), Hu C-H(胡昌浩). Research progress of ecological environment quality in maize. J Maize Sci (玉米科学), 2002, 10 (1): 41–45 (in Chinese)



[25]Guo J-P(郭建平), Gao S-H(高素华). The experimental study on impacts of high temperature and high CO2 concentration on crops. Chin J Eco-Agric(中国生态农业学报), 2002, 10(1): 17–20 (in Chinese with English abstract)



[26]Blum A. Improving wheat grain filling under stress by stemreserve mobilisation. Euphytica, 1998, 100: 77–83



[27]Wilhelm E P, Mullen R E, Keeling P L, Singletary G W. Heat stress during grain filling in maize: effects on kernel growth and metabolism. Crop Sci, 1999, 39: 1733–1741



[28]Muchow R C. Effect of high temperature on grain-growth in field-grown maize. Field Crops Res, 1990, 23: 145–158



[29]Liu P(刘萍), Lu W-P(陆卫平), Wang F-G(王凤格), Zhang K-D(张凯迪), Zhao J-R(赵久然), Shao X-L(邵香兰), Dong L-M(董鲁明). Quality differences and index for the optimum harvest stage in super sweet corn. J Yangzhou Univ (Agric Life Sci)(扬州大学学报•农业与生命科学版), 2007, 28(1): 72–76 (in Chinese with English abstract)



[30]Wang D(王东), Yu Z-W(于振文), Wang X-D(王旭东), Liang X-F(梁晓芳). Effects of sulfur nutrition on starch synthesis and related enzymes activity in kernels of wheat. J Plant Physiol Mol Biol (植物生理与分子生物学学报), 2003, 29(5): 4373–442(in Chinese with English abstract)



[31]Liu P(刘鹏), Hu C-H(胡昌浩), Dong S-T(董树亭), Wang K-J(王空军), Zhang J-W(张吉旺). Comparison of enzymes activity associated with sucrose metabolism in the developing grains between sweet corn and normal corn. Sci Agric Sin (中国农业科学), 2005, 38(1): 52–58(in Chinese with English abstract)



[32]Ebrahim M K, Zingsheim O, Elshourbagy M N. Growth and sugar storage in sugarcane grown at temperatures below and above optimum. J Plant Physiol, 1998, 153: 593–602



[33]Lafta A M, Lorenzen J H. Effect of high temperature on plant growth and carbohydrate metabolism in tomato. Plant Physiol, 1995, 109: 637–643



[34]Pan Q-M(潘庆民), Yu Z-W(于振文), Wang Y-F(王月福). Sucrose synthesis in flag leaves and sucrose degradation in grain after anthesis of wheat. J Plant Physiol Mol Biol (植物生理与分子生物学学报), 2002, 28(3): 235–240 (in Chinese with English abstract)

[1] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
[2] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[3] 颜晓军, 叶德练, 苏达, 李芳, 郑朝元, 吴良泉. 磷肥用量对甜玉米磷素吸收利用的影响[J]. 作物学报, 2021, 47(1): 169-176.
[4] 李瑞杰,唐会会,王庆燕,许艳丽,王琦,卢霖,闫鹏,董志强,张凤路. 5-氨基乙酰丙酸和乙烯利对东北春玉米源库碳平衡的调控效应[J]. 作物学报, 2020, 46(7): 1063-1075.
[5] 刘震宇,王桂霞,李丽楠,蔡泽洲,梁潘潘,吴莘玲,张祥,陈德华. 高温胁迫终止后Bt棉蕾杀虫蛋白的恢复特征及相关生理机制[J]. 作物学报, 2020, 46(3): 440-447.
[6] 鲁海琴, 陈丽, 陈磊, 张盈川, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-novel-miR311-HSC70-1模块调控甘蓝型油菜响应热胁迫的机制[J]. 作物学报, 2020, 46(10): 1474-1484.
[7] 要凯,赵章平,康益晨,张卫娜,石铭福,杨昕宇,范艳玲,秦舒浩. 沟垄覆膜对连作马铃薯土壤酶活性、理化性状及产量的影响[J]. 作物学报, 2019, 45(8): 1286-1292.
[8] 赵松超,李一凡,刘博远,赵铭钦. 晾制密度对雪茄烟叶膜脂过氧化作用及品质的影响[J]. 作物学报, 2019, 45(7): 1090-1098.
[9] 王凯,赵小红,姚晓华,姚有华,白羿雄,吴昆仑. 茎秆特性和木质素合成与青稞抗倒伏关系[J]. 作物学报, 2019, 45(4): 621-627.
[10] 孙凯,刘振,胡恒宇,李耕,刘文涛,杨柳,宁堂原,王彦玲. 有机培肥与轮耕方式对夏玉米田土壤碳氮和产量的影响[J]. 作物学报, 2019, 45(3): 401-410.
[11] 樊海潮,顾万荣,杨德光,尉菊萍,朴琳,张倩,张立国,杨秀红,魏湜. 化控剂对东北春玉米茎秆理化特性及抗倒伏的影响[J]. 作物学报, 2018, 44(6): 909-919.
[12] 方彦,孙万仓,武军艳,刘自刚,董云,米超,马骊,陈奇,何辉立. 北方白菜型冬油菜的膜脂脂肪酸组分和ATPase活性对温度的响应[J]. 作物学报, 2018, 44(01): 95-104.
[13] 陈鸿飞,庞晓敏,张仁,张志兴,徐倩华,方长旬,李经勇,林文雄. 不同水肥运筹对再生季稻根际土壤酶活性及微生物功能多样性的影响[J]. 作物学报, 2017, 43(10): 1507-1517.
[14] 陈金,庞党伟,韩明明,尹燕枰,郑孟静,骆永丽,王振林*,李勇*. 耕作模式对土壤生物活性与养分有效性及冬小麦产量的影响[J]. 作物学报, 2017, 43(08): 1245-1253.
[15] 汪顺义,李欢,刘庆,史衍玺*. 施钾对甘薯根系生长和产量的影响及其生理机制[J]. 作物学报, 2017, 43(07): 1057-1066.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!