欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (09): 1635-1643.doi: 10.3724/SP.J.1006.2013.01635

• 耕作栽培·生理生化 • 上一篇    下一篇

两个杂交棉F1、F2代及亲本冠层结构与物质生产特征

冯国艺1,2,干秀霞1,杨美森1,姚炎帝1,罗宏海1,张亚黎1,张旺锋1,*   

  1. 1 石河子大学农学院 / 新疆兵团绿洲生态农业重点实验室,新疆石河子 832003; 2 河北省农林科学院棉花研究所 / 农业部黄淮海半干旱区棉花生物学与遗传育种重点实验室,河北石家庄 050051
  • 收稿日期:2013-01-04 修回日期:2013-04-22 出版日期:2013-09-12 网络出版日期:2013-07-09
  • 通讯作者: 张旺锋, E-mail: zhwf_agr@shzu.edu.cn, Tel: 0993-2057326
  • 基金资助:

    本研究由国家自然科学基金项目(31060176)和国家科技支撑计划项目(2007BAD44B07)资助。

Canopy Structure and Matter Production Characteristics of F1, F2, and Their Parents in Two Cotton Hybrids

FENG Guo-Yi1,2,GAN Xiu-Xia1,YANG Mei-Sen1,YAO Yan-Di1,LUO Hong-Hai1,ZHANG Ya-Li1,ZHANG Wang-Feng1,*   

  1. 1 Key Laboratory of Oasis Ecology Agriculture of Xinjiang Construction Group / College of Agriculture, Shihezi University, Shihezi 832003, China; 2 Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture/ Cotton Research Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
  • Received:2013-01-04 Revised:2013-04-22 Published:2013-09-12 Published online:2013-07-09
  • Contact: 张旺锋, E-mail: zhwf_agr@shzu.edu.cn, Tel: 0993-2057326

摘要:

以杂交棉石杂2号和新陆早43F1F2代及亲本NT2H24-14为试材,通过测定不同生育时期各材料叶面积指数(LAI)、叶倾角(MTA)、冠层光截获率等指标,分析了各指标变化对群体光合物质生产的影响。结果表明,2个杂交棉F1LAI具有超亲优势,冠层光截获率具有中亲优势; LAI和冠层光截获率具有明显的母系遗传特性,而MTA受到父本的显著影响。F2代冠层结构主要受F1代相关指标和衰退率的影响,LAI中亲优势减小了衰退率; 杂交棉F1代光合物质积累主要受亲本参数和超亲优势的影响,F2代主要受F1代参数的影响。杂交棉光合物质积累最大增长速率和直线增长期开始时间较晚,直线增长期及活跃增长期较长,最终积累量和最大增长速率较高。杂交棉F1代具有明显的光合生产和产量优势,F2代具有一定的产量优势。以选择具有优化冠层结构的亲本为基础,组配具有较大MTA的父本和较大LAI的母本,有利于改善杂交棉光合性能,提高群体光能利用率,进一步挖掘产量潜力,为杂交棉高光效组合的选育及提高F2代应用提供理论依据。

关键词: 杂交棉, 冠层结构, 杂种优势, F2

Abstract:

A field experiment was conducted using the F1, F2 of two cotton hybrids of Shiza 2 and Xinluzao 43 and their parents NT2, H2, and 4-14. After measuring the leaf area index (LAI), leaf inclination angle (MTA) and light interception rate (LIR) at different growing periods, it is clear that the matter production of hybrid cotton was affected directly by the parameter changes of the canopy structure and photosynthetic characteristics of two cotton hybrids parents. The results revealed that the over-parent hereosis of F1 in two cotton hybrids was observed on LAI and mid-parent heterosis of them was provided with LIR. Both LAI and LIR were observed obviously with matrilineal genetic characteristics, while MTA was influenced by paternal inhentance. The canopy structure of F2 in two cotton hybrids was mainly influenced by the related parameters of F1 in hybrid cotton indexes and their decreasing rate. The decreasing rate was deduced by the over-parent hereosis on LAI. The photosynthate accumulation of F1 in two cotton hybrids was mainly influenced by the numerical value of their parents and over-parent hereosis, and the photosynthate accumulation of F2 in two cotton hybrids was mainly influenced by the related parameters of F1. The initial time of the highest increasing velocity of photosynthate accumulation and the linear increasing period was later, the linear increasing period and the active increasing period of photosynthate accumulation were longer, the total photosynthate accumulation and the highest increasing velocity were larger in two cotton hybrids. The photosynthate and yield were very high in F1 of hybrid cotton, and there was a high yield only in F2 of hybrid cotton. Based on choosing the parents with the optimizated canopy structure, we should be make a well combination between father plant with larger MTA and mother plant with larger LAI, which will be provides used for improving hybrid cotton photosynthetic performance, increasing light use efficiency for enhancing yield potential further. The study provided come theoretical parameters for breeding high photosynthetic efficiency hybrid line andimproving utilization of F2 in hybrid cotton.

Key words: Hybrid cotton, Canopy structure, Heterosis, F2

[1]Wang K-R(王克如), Li S-K(李少昆), Song G-J(宋光杰), Chen G(陈刚), Cao S-Z(曹栓柱). Studies on cultivated physiological indexes for high-yielding cotton in Xinjiang. Sci Agric Sin (中国农业科学), 2002, 35(6): 638–644 (in Chinese with English abstract)



[2]Zhao M(赵明), Li J-G(李建国), Zhang B(张宾), Dong Z-Q(董志强), Wang M-Y(王美云). The compensatory mechanism in exploring crop production potential. Acta Agron Sin (作物学报), 2006, 32(10): 1566–1573 (in Chinese with English abstract)



[3]Peng S B, Khush G S, Virk P, Tang Q Y, Zou Y B. Progress in ideotype breeding to increase rice yield potential. Field Crops Res, 2008, 108: 32–38



[4]Hua S J, Yuan S N, Shamsi I H, Zhao X Q, Zhang X Q, Liu Y X, Wen G J, Wang X D, Zhang H P. A comparison of three isolines of cotton differing in fiber color for yield, quality, and photosynthesis. Crop Sci, 2009, 49: 983–989



[5]Lü L-H(吕丽华), Tao H-B(陶洪斌), Xia L-K(夏来坤), Zhang Y-J(张雅杰), Zhao M(赵明), Zhao J-R(赵久然), Wang P(王璞). Canopy structure and photosynthesis traits of summer maize under different planting densities. Acta Agron Sin (作物学报), 2008, 34(3): 447–455 (in Chinese with English abstract)



[6]Long S P, Zhu X G, Naidu S L, Ort D R. Can improved photosynthesis increase crop yields? Plant Cell Environ, 2006, 29: 315–330



[7]Goudriaan J, Monteith J L. A mathematical function for crop growth based on light interception and leaf area expansion. Ann Bot, 1990, 66: 695–701



[8]Brooks T J, Wall G W, Pinter Jr P J, Kimball B A, LaMorte R L, Leavitt S W, D. Matthias A D, Adamsen F J, Hunsaker D J, Webbeer A N. Acclimation response of spring wheat in a free-air CO2 enrichment (FACE) atmosphere with variable soil nitrogen regimes. 3: Canopy architecture and gas exchange. Photosynth Res, 2000, 66: 97–108



[9]Stewart D W, Costa C, Dwyer L M, Smith D L, Hamilton R L, Ma B L. Canopy structure, light interception, and photosynthesis in maize. Agron J, 2003, 95: 1465–1474



[10]Hu Y-J(胡延吉), Lan J-H(兰进好), Zhao T-F(赵坦方), Gao F-Z(高法振). Canopy architecture and photosynthetic characteristics in two winter wheat cultivars with different spike type. Acta Agron Sin (作物学报), 2000, 26(6): 905–912 (in Chinese with English abstract)



[11]Joshi A K. Genetic factors afecting photosynthesis. In: Pessarakli M ed. Handbook of Photosynthesis. New York: Marcel Dekker, 1996. pp 751–767



[12]Hao N B, Du W G, Ge Q Y, Zhang G R, Li W H, Man W Q, Peng D Q, Bai K Z, Kuang T Y. Progress in the breeding of soybean for nigh photosynthetic efficiency. Acta Bot Sin, 2002, 44: 253–258



[13]Ji B H, Tan H H, Zhou R, Jiao D M, Shen Y G. Promotive effect of low concentrations of NaHSO3 on photophosphorylation and photosynthesis in phosphoenolpyruvate carboxylase transgenic rice leaves. J Integr Plant Biol, 2005, 47: 178–186



[14]Wang R-H(汪若海), Li X-L(李秀兰). Pregresses on hybrid cotton and its further studies. Sci Agric Sin (中国农业科学), 2000, 33(6): 111–112 (in Chinese with English abstract)



[15]Xing C-Z(邢朝柱), Yu S-X(喻树迅), Zhao Y-L(赵云雷), Guo L-P(郭立平), Zhang X-L(张献龙), Miao C-D(苗成朵), Wang H-L(王海林). Primary study on gene differential expression of pest resistant cotton hybrids between different heterosis crosses. Acta Agron Sin (作物学报), 2007, 33(3): 507–510 (in Chinese with English abstract)



[16]Tollenaar M, Ahmadzadeh A, Lee E A. Physiological basis of heterosis for grain yield in maize. Crop Sci, 2004, 44: 2086–2094



[17]Guo L-P(郭立平), Xing C-Z(邢朝柱), Miao C-D(苗成朵), Wang H-L(王海林), Song M-Z(宋美珍), Wang H-Q(海琴). Physiological and biochemical characteristics of hybrid cottons CCRI29, CCRI38, CCRI39 and their parents. Cotton Sci (棉花学报), 2005, 17(5): 314–315 (in Chinese with English abstract)



[18]Ni Z F, Kim E D, Ha M, Lackey E, Liu J X, Zhang Y R, Sun Q X, Chen Z J. Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature, 2009, 457: 327–331



[19]Wang X-L(王秀莉), Hu Z-R(胡兆荣), Peng H-R(彭惠茹), Du J-K(杜金昆), Sun Q-X(孙其信), Wang M(王敏), Ni Z-F(倪中福). Relationship of photosynthetic carbon assimilation related traits of flag leaves with yield heterosis in a wheat diallel cross. Acta Agron Sin (作物学报), 2010, 36(6): 1003–1010 (in Chinese with English abstract)



[20]Hu Z-Z(胡兆璋). Review of the five agriculture science and technology leaps in Xinjiang construction group. State Farms Technol Xinjiang (新疆农垦科技), 2009, (1): 3–6 (in Chinese)



[21]Du M-W(杜明伟), Luo H-H(罗宏海), Zhang Y-L(张亚黎), Yao Y-D(姚炎帝), Zhang W-F(张旺锋), Xia D-L(夏东利), Ma L(马丽), Zhu B(朱波). Photosynthesis characteristics of super-high-yield hybrid cotton in Xinjiang. Sci Agric Sin (中国农业科学), 2009, 42(6): 1952–1962 (in Chinese with English abstract)



[22]Tang B, Johnie N, Jenkins J C, McCarty J C, Watson C E. F2 hybrids of host plant germplasm and cotton cultivars: Ⅰ. Heterosis and combining ability for lint yield and yield component. Crop Sci, 1993, 33: 700–705



[23]Zhang Z-H(张正圣), Li X-B(李先碧), Liu D-J(刘大军), Xiao Y-H(肖月华), Luo M(罗明), Huang S-L(黄顺礼), Zhang F-X(张凤鑫). Study on combining ability and heterosis between high strength lines and Bt (Bacillus thuringiensis) bollworm-resistant lines in upland cotton (Gossypium hirsutum L.). Sci Agric Sin (中国农业科学), 2002, 35(12): 1450–1455 (in Chinese with English abstract)



[24]May O L, Jividen G M. Genetic modification of cotton fiber properties as measured by single-and high-volume instruments. Crop Sci, 1999, 39: 328–333



[25]Malone S, Herbert Jr D A, Holshouser D L. Evaluation of the LAI-2000 plant canopy analyzer to estimate leaf area in manually defoliated soybean. Agron J, 2002, 94: 1012–1019



[26]Gao L-Z(高亮之), Li L(李林). Rice Meteoric Ecology (水稻气象生态学). Beijing: Agriculture Press, 1992. pp 121–123 (in Chinese)



[27]Maddonni G A, Otegui M E. Leaf area, light interception and crop development in maize. Field Crops Res, 1996, 48: 81–87



[28]Sheeky J E, Mitchell P L, Hardy B C. Redesigning rice photosynthesis to increase yield. Netherland: IRRI & Elsevice Science, 2000. pp 101–102



[29]Cheng J-F(程建峰), Ma W-M(马为民), Chen G-Y(陈根云), Hu M-J(胡美君), Shen Y-G(沈允钢), Li Z-S(李振声), Tong Y-P(童依平), Li B(李滨), Li H-W(李宏伟). Dynamic changes of photosynthetic characteristics in Xiaoyan 54, Jing 411, and the stable selected superior strains of their hybrid progenies. Acta Agron Sin (作物学报), 2009, 35(6): 1051–1058 (in Chinese with English abstract)



[30]Zhang H-G(张宏根), Kong X-W(孔宪旺), Zhu Z-B(朱正斌), Tang S-Z(汤述翥), Yi C-D(裔传灯), Gu M-H(顾铭洪). Analysis of characteristics and heterosis of three-line parents in hybrid Japonica rice. Acta Agron Sin (作物学报), 2010, 36(5): 801–809 (in Chinese with English abstract)



[31]Sun Q X, Wu L M, Ni Z F, Meng F R, Wang Z K, Lin Z. Differential gene expression patterns in leaves between hybrids and their parental inbreds are correlated with heterosis in a wheat diallel cross. Plant Sci, 2004, 166: 651–657



[32]Adams K L. Evolution of duplicate gene expression in polyploidy and hybrid plants. J Hered, 2007, 98: 136–141



[33]Bao J Y, Lee S, Chen C, Zhang X Q, Zhang Y, Liu S Q, Clark T, Wang J, Cao M L, Yang H M, Wang S M, Yu Y J. Serial analysis of gene expression study of a hybrid rice strain (LYP9) and its parental cultivars. Plant Physiol, 2005, 138: 1216–1231



[34]Hang Y(黄毅), Li L-H(李利华), Chen Y(陈莹), Li X-H(李香花), Xu C-G(徐才国), Wang S-P(王石平), Zhang Q-F(张启发). Comparison analysis of hybrid rice hybrid LYP9 and parents at seedling stag. Sci China: Ser C (中国科学-C辑): 2006, 36(4): 302–311 (in Chinese with English abstract)



[35]Zhang X-M(张小蒙), Xiao N(肖宁), Zhang H-X(张洪熙), Feng Y-X(冯彦侠), Liu Z-X(刘知晓), Gao Y(高勇), Dai Z-Y(戴正元), Chen J-M(陈建民). Analysis of the Relationship between Differential Expression of Rice Gene and Heterosis. Sci Agric Sin (中国农业科学), 2012, 45(7):1235–1245 (in Chinese with English abstract)



[36]Xiong L Z, Yang G P, Zhang Q F, Maroof M A S. Relationships of differential gene expression in leaves with heterosis and heterozgosity in a rice diallel cross. Mol Breed, 1998, 4: 129–136



[37]Wang Z-K(王章奎), Ni Z-F(倪中福), Meng F-R(孟凡荣), Wu L-M(吴利民), Xie X-D(谢晓东), Sun Q-X(孙其信). Primary study on the relationship between differential gene expression patterns in roots at jointing stage and heterosis in agronomic traits in a wheat dialle cross. Sci Agric Sin (中国农业科学), 2003, 36(5): 473–479 (in Chinese with English abstract)



[38]Zhang X-L(张献龙), Guo L-P(郭立平), Wang H-L(王海林). Relationship between gene differential expression of leaves in full opening flower stages of hybrids & their parents and heterosis in pest-resistant cotton. Acta Genet Sin (遗传学报), 2006, 33(10): 948–956 (in English with Chinese abstract)



[39]Wang X-D(王学德), Pan J-J(潘家驹). Genetic analysis of heterosis and inbreeding depression in upland cotton. Acta Agron Sin (作物学报), 1991, 17(1): 18–23 (in Chinese with English abstract)



[40]Jiang H(江华), Wang H-W(王宏炜), Su J-H(苏吉虎), Shi X-B(石晓冰), Shen Y-G(沈允钢), Li Z-S(李振声), Wei Q-K(魏其克), Zhang X-M(张锡梅), Li B(李滨), Li M(李鸣), Zhang J-J(张吉军). Photosynthesis in offspring of hybridization between two wheat cultivars. Acta Agron Sin (作物学报), 2002, 28(4): 451–454 (in Chinese with English abstract)



[41]Boerma H R, Specht J E. Soybeans: Improvement, Production and Uses, 3rd edn. Madison, Wisconsin, USA: SSSA Publishers, 2004. pp 303–396



[42]Kindred D R, Gooding M J. Heterosis for yield and its physiological determinants in wheat. Euphytica, 2005, 142: 149–159

[1] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[2] 颜为, 李芳军, 徐东永, 杜明伟, 田晓莉, 李召虎. 行距与氮肥或甲哌鎓化控对棉花冠层结构、温度和相对湿度的影响[J]. 作物学报, 2021, 47(9): 1654-1665.
[3] 向丽媛,徐凯,苏静,吴超,袁雄,郑兴飞,刁英,胡中立,李兰芝. 基于通路分析剖析水稻农艺性状配合力和杂种优势[J]. 作物学报, 2019, 45(9): 1319-1326.
[4] 柏延文,杨永红,朱亚利,李红杰,薛吉全,张仁和. 种植密度对不同株型玉米冠层光能截获和产量的影响[J]. 作物学报, 2019, 45(12): 1868-1879.
[5] 邹应斌,黄敏. 转型期作物生产发展的机遇与挑战[J]. 作物学报, 2018, 44(6): 791-795.
[6] 王琪月, 孟淑君, 张柯, 张战辉, 汤继华, 丁冬. 玉米雌穗发育杂种优势相关miRNA的研究[J]. 作物学报, 2018, 44(6): 796-813.
[7] 董婧,逯晓萍,张坤明,薛春雷,张瑞霞. 高丹草杂种及其亲本转录组SNP及等位基因特异性表达分析[J]. 作物学报, 2018, 44(12): 1809-1817.
[8] 张征,张雪丽,莫博程,代志军,胡中立,李兰芝,郑兴飞. 籼型杂交水稻农艺性状的配合力研究[J]. 作物学报, 2017, 43(10): 1448-1457.
[9] 杨延龙,肖飞,徐守振,王宇轩,左文庆,梁福斌,张旺锋. 新疆早熟陆地棉品种更替产量提高过程中冠层结构特征的演变[J]. 作物学报, 2017, 43(10): 1518-1526.
[10] 吴晓丽,李朝苏,汤永禄,李俊,马孝玲,李式昭,黄明波. 四川盆地9000 kg hm-2产量潜力小麦品种的花后冠层结构、生理及同化物分配特性[J]. 作物学报, 2017, 43(07): 1043-1056.
[11] 杨慧丽,林亚楠,张怀胜,卫晓轶,丁冬,薛亚东. 玉米开花期性状的QTL及杂种优势位点定位[J]. 作物学报, 2017, 43(05): 678-690.
[12] 于亚辉,刘郁,李振宇,陈广红,徐正进,唐亮,毛艇,徐海. 亲本籼粳成分与两系杂交粳稻杂种优势的关系及遗传基础[J]. 作物学报, 2016, 42(05): 648-657.
[13] 韩平安,逯晓萍,米福贵,张瑞霞,李美娜,薛春雷,董婧,丛梦露. 基于蛋白质组学的高丹草苗期杂种优势分析[J]. 作物学报, 2016, 42(05): 696-705.
[14] 彭倩,薛亚东,张向歌,李慧敏,孙高阳,李卫华,谢慧玲,汤继华. 利用单片段代换系测交群体定位玉米产量相关性状的杂种优势位点[J]. 作物学报, 2016, 42(04): 482-491.
[15] 姜元华,许轲,赵可,孙建军,韦还和,许俊伟,魏海燕,郭保卫,霍中洋,戴其根,张洪程*. 甬优系列籼粳杂交稻的冠层结构与光合特性[J]. 作物学报, 2015, 41(02): 286-296.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!