欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (3): 401-410.doi: 10.3724/SP.J.1006.2019.83028

• 耕作栽培·生理生化 • 上一篇    下一篇

有机培肥与轮耕方式对夏玉米田土壤碳氮和产量的影响

孙凯1,刘振1,胡恒宇1,李耕1,刘文涛1,杨柳1,宁堂原1,*(),王彦玲2   

  1. 1 作物生物学国家重点实验室 / 农业部作物水分生理与抗旱种质改良重点实验室 / 山东农业大学农学院, 山东泰安 271018
    2 滕州市农业局, 山东滕州 277519
  • 收稿日期:2018-06-26 接受日期:2018-12-24 出版日期:2019-03-12 网络出版日期:2019-01-06
  • 通讯作者: 宁堂原
  • 作者简介:E-mail: sksxz92@163.com
  • 基金资助:
    本研究由国家公益性行业(农业)科研专项(201503121)和山东省2017年度农业重大应用技术创新项目资助

Effect of organic fertilizer and rotational tillage practices on soil carbon and nitrogen and maize yield in wheat-maize cropping system

Kai SUN1,Zhen LIU1,Heng-Yu HU1,Geng LI1,Wen-Tao LIU1,Liu YANG1,Tang-Yuan NING1,*(),Yan-Ling WANG2   

  1. 1 State Laboratory of Crop Biology, Key Laboratory of Crop Water Physiology and Drought-tolerance Germplasm Improvement, Ministry of Agriculture, College of Agronomy, Shandong Agricultural University, Tai’an 271018, Shandong, China;
    2 Tengzhou Agricultural Bureau, Tengzhou 277519, Shandong, China
  • Received:2018-06-26 Accepted:2018-12-24 Published:2019-03-12 Published online:2019-01-06
  • Contact: Tang-Yuan NING
  • Supported by:
    This study was supported by the Special Fund for Agro-scientific Research in the Public Interest of China (201503121) and the Major Agricultural Applied Technology Innovation Project of Shandong Province in 2017.

摘要:

探明不同轮耕和有机培肥方式对夏玉米田土壤碳氮及其酶活性的影响, 对提升农田土壤肥力及促进玉米高产具有重要意义。设秸秆(P)与牛粪(F)两种有机培肥方式和小麦季旋耕-玉米季深松(RS)、小麦季深松-玉米季免耕(SN)、小麦季翻耕-玉米季免耕(CN) 3种轮耕方式, 共6个处理, 于2015—2016和2016—2017玉米收获期采样测定, 研究了不同有机培肥和轮耕方式对土壤碳氮及其酶活性和作物产量的影响。结果表明, 轮耕方式、有机肥及其交互效应对土壤肥力有显著影响。在0~10 cm和10~20 cm土层, 与轮耕方式CN相比, RS和SN能够显著提高土壤有机碳、全氮含量和脲酶、蔗糖酶活性。在轮耕方式RS中, 与施用牛粪相比, 秸秆还田显著提高了10~20 cm、20~30 cm和30~40 cm土层的有机碳含量, 增加了10~20 cm土层的全氮含量和蔗糖酶活性。在轮耕方式SN中, 与秸秆还田相比, 施用牛粪显著提高了0~10 cm和10~20 cm土层的有机碳、全氮含量和蔗糖酶活性, 增加了各土层脲酶活性。与秸秆还田+翻耕-免耕(PCN)相比, 秸秆还田+旋耕-深松(PRS)和施用牛粪+深松-免耕(FSN)能显著提高土壤肥力。在0~10 cm和10~20 cm土层, 各处理中以FSN增加土壤有机碳、全氮含量和蔗糖酶、脲酶活性最为明显。轮耕方式、有机肥及其交互效应对产量有显著影响。轮耕方式RS和SN的产量较CN分别显著提高了1.89%~10.49%、5.44%~11.99%。在轮耕方式RS中, 产量表现为秸秆还田较施用牛粪显著提高了2.91%~3.11%; 而在轮耕方式SN中, 则表现为秸秆还田较施用牛粪显著降低了5.02%~9.07%。两年玉米产量均表现为FSN>PRS>FRS>PSN>FCN>PCN。综上所述, 在6种处理中, 处理FSN在提高土壤肥力和产量方面最为显著, 可以作为试验及周边地区适宜的轮耕培肥方式。

关键词: 轮耕, 有机肥, 土壤碳氮, 酶活性, 产量

Abstract:

Quantitatively analyzing the effects of different tillage rotations and organic fertilization practices on soil carbon, nitrogen and their enzyme activities is of great importance to improve soil fertility and promote maize yield. This study was intended to explore changes of soil organic carbon, total nitrogen, urease and sucrase activities under different tillage rotations and organic manure patterns in wheat-maize cropping system of North China Plain. Six treatments were compared, which were straw returning with rotary tillage-subsoiling (PRS), straw returning with subsoiling-no tillage (PSN), straw returning with conventional tillage-no tillage (PCN), cow manure with rotary tillage-subsoiling (FRS), cow manure with subsoiling-no tillage (FSN), and cow manure with conventional tillage-no tillage (FCN). The tillage mode, organic manure and their interactions had significant effects on soil fertility. The RS and SN patterns had higher contents of soil organic carbon and total nitrogen, and higher enzyme activities of urease and sucrase in 0-10 cm and 10-20 cm soil layers compared with the CN pattern. In rotation tillage mode of RS, straw returning significantly increased the soil organic carbon contents in 10-20 cm, 20-30 cm, and 30-40 cm soil layers, and increased the total nitrogen content and sucrase activity in 10-20 cm soil layer. In rotation tillage mode of SN, the soil organic carbon, total nitrogen content, and sucrase activity in 0-10 cm and 10-20 cm soil layers, and urease enzyme activity in each soil layer, were significantly increased by applying cow manure compared with straw returning. Compared with PCN, PRS and FSN could significantly increase the soil fertility. The soil organic carbon, total nitrogen, urease and sucrase activities in FSN treatment were the highest in 0-10 cm and 10-20 cm soil layers in all treatments. The tillage mode, organic manure and their interactions had significant effects on maize yield. Compare with CN pattern, maize yield of the RS and SN patterns were averagely increased by 1.89%-10.49% and 5.44%-11.99%, respectively. In rotation tillage mode of RS, the yield under straw returning was significantly increased by 2.91%-3.11% compared with that under using cow manure; while in rotation tillage mode of SN, the yield under straw returning was 5.02%-9.07% lower than that under applying cow manure. The average yields of two years were in the order of FSN>PRS>FRS>PSN>FCN>PCN. This study demonstrates that cow manure with subsoiling-no tillage can increase the soil organic carbon, total nitrogen, and urease and sucrase activities, and increase the crop yield as a result. Thus, cow manure with subsoiling-no tillage management practice is a better mode for increasing soil fertility and crop productivity, which should be expected to be adopted in the North China Plain.

Key words: rotation tillage, organic fertilizer, soil carbon and nitrogen, enzyme activity, yield

表1

有机培肥与轮耕方式对土壤有机碳的影响"

处理
Treatment
2016 2017
0-10 cm 10-20 cm 20-30 cm 30-40 cm 0-10 cm 10-20 cm 20-30 cm 30-40 cm
PRS 11.91 a 10.19 a 7.02 a 5.05 bc 12.60 b 12.36 a 8.47 a 5.18 b
PSN 11.23 b 9.66 c 6.75 b 5.18 ab 12.50 b 12.24 b 6.31 d 6.17 a
PCN 11.17 c 9.65 c 5.83 d 4.26 d 12.13 c 10.27 e 6.59 c 4.67 c
FRS 11.03 b 9.94 b 6.20 c 4.39 d 12.55 b 12.00 c 6.54 c 4.89 c
FSN 11.98 a 10.27 a 7.27 a 5.31 a 12.69 a 12.47 a 7.91 b 6.41 a
FCN 10.99 c 9.79 bc 5.86 d 4.90 c 12.20 c 10.93 d 6.64 c 4.23 d
方差分析 Analysis of variance
T ** ** ** ** ** ** ** **
C ** ** ns ns ** * * **
T×C ** ** ** ** ** ** ** **

表2

有机培肥与轮耕方式对土壤全氮的影响"

处理
Treatment
2016 2017
0-10 cm 10-20 cm 20-30 cm 30-40 cm 0-10 cm 10-20 cm 20-30 cm 30-40 cm
PRS 1.04 b 0.91 b 0.51 d 0.40 d 1.08 b 1.05 a 0.72 a 0.57 ab
PSN 0.94 cd 0.83 c 0.58 c 0.49 c 1.06 c 0.99 c 0.67 b 0.55 b
PCN 0.92 d 0.73 d 0.64 b 0.50 bc 1.05 c 0.92 d 0.59 d 0.58 ab
FRS 1.08 a 0.87 bc 0.62 b 0.52 ab 1.10 a 1.02 b 0.64 c 0.59 a
FSN 1.09 a 0.99 a 0.61 b 0.44 e 1.12 a 1.06 a 0.71 a 0.56 ab
FCN 0.97 c 0.77 d 0.70 a 0.54 a 1.04 c 1.00 c 0.61 d 0.57 ab
方差分析 Analysis of variance
T ** ** ** ** ** ** ** *
C ** ** ** ** ** ** ** ns
T×C ** ** ** ** ** ** ** ns

表3

有机培肥与轮耕方式对0~40 cm土层有机碳、全氮和C/N的影响"

处理
Treatment
2016 2017
C N C/N C N C/N
PRS 8.54 b 0.72 c 11.93 a 9.65 a 0.85 a 11.24 b
PSN 8.21 c 0.71 c 11.52 b 9.31 b 0.82 c 11.33 ab
PCN 7.73 e 0.70 d 11.09 c 8.41 c 0.78 d 10.67 c
FRS 7.89 d 0.77 a 10.19 e 8.99 b 0.84 b 10.76 c
FSN 8.71 a 0.78 a 11.13 c 9.87 a 0.86 a 11.43 a
FCN 7.88 d 0.75 b 10.56 d 8.50 c 0.81 c 10.50 d
方差分析 Analysis of variance
T ** ** ** ** ** **
C ns ** ** ns ** **
T×C ** ** ** ** ** **

图1

有机培肥与轮耕方式对土壤蔗糖酶活性的影响 同一土壤层次标以不同字母的柱值表示不同处理间差异显著(P<0.05)。*和**表示在0.01水平上的显著性。T: 耕作因素; C: 有机肥因素; P: 秸秆; F: 牛粪。其他缩写同表1。"

图2

有机培肥和轮耕方式对土壤脲酶活性的影响 同一土壤层次标以不同字母的柱值表示不同处理间差异显著(P<0.05)。**表示在0.01水平上的显著性。T: 耕作因素; C: 有机肥因素; P: 秸秆; F: 牛粪。其他缩写同表1。"

表4

有机培肥和轮耕方式对玉米产量及其构成因素的影响"

处理
Treatment
千粒重
1000-grain weight (g)
穗粒数
Grain number per spike
公顷穗数
Spike number (×104)
产量
Yield (kg hm-2)
2016 PRS 278.95 a 594.33 b 6.22 a 8787 b
PSN 268.83 d 589.90 b 6.24 a 8504 c
PCN 275.22 bc 568.03 d 5.97 b 8065 e
FRS 275.85 b 592.07 b 6.14 a 8522 c
FSN 277.06 ab 605.07 a 6.23 a 8931 a
FCN 272.54 c 575.73 c 6.03 b 8364 d
2017 PRS 282.39 ab 596.47 b 6.28 a 9054 b
PSN 277.80 b 591.80 c 6.24 ab 8647 d
PCN 271.89 c 566.70 d 6.07 c 8194 f
FRS 274.32 c 590.61 c 6.26 ab 8798 c
FSN 285.93 a 609.85 a 6.27 a 9431 a
FCN 273.23 c 564.07 e 6.18 b 8421 e
F-value T ** ** ** **
C ns ** ns **
Y ** ns ** **
T×C ** ** ** **
T×Y ** ** ** **
C×Y ns * * **
T×C×Y ns ** ns **
[1] 王淑兰, 王浩, 李娟, 吕薇, 陈宁宁, 李军 . 不同耕作方式下长期秸秆还田对旱作春玉米田土壤碳、氮、水含量及产量的影响. 应用生态学报, 2016,27:1530-1540.
doi: 10.13287/j.1001-9332.201605.035
Wang S L, Wang H, Li J, Lyu W, Chen N N, Li J . Effects of long-term straw mulching on soil organic carbon, nitrogen and moisture and spring maize yield on rain-fed croplands under different patterns of soil tillage practice. Chin J Appl Ecol, 2016,27:1530-2540 (in Chinese with English abstract).
doi: 10.13287/j.1001-9332.201605.035
[2] 孙立军, 张仁陟, 黄高宝 . 保护性耕作对黄土高原旱地地表土壤理化性状的影响. 干旱地区农业研究, 2007,25(6):207-211.
Sun L J, Zhang R Z, Huang G B . Effects of the conservation tillage on the physicochemical characteristics of soil surface in the semi-arid areas of the Loess plateau. Agric Res Arid Areas, 2007,25(6):207-211 (in Chinese with English abstract).
[3] 高焕文, 李问盈, 李洪文 . 中国特色保护性耕作技术. 农业工程学报, 2003,19(3):1-4.
doi: 10.3321/j.issn:1002-6819.2003.03.001
Gao H W, Li W Y, Li H W . Conservation tillage technology with Chinese characteristics. Trans CSAE, 2003,19(3):1-4 (in Chinese with English abstract).
doi: 10.3321/j.issn:1002-6819.2003.03.001
[4] 陈学文, 张晓平, 梁爱珍, 贾淑霞, 时秀焕, 范如芹, 魏守才 . 耕作方式对黑土硬度和容重的影响. 应用生态学报, 2012,23:439-444.
Chen X W, Zhang X P, Liang A Z, Jia S X, Shi X H, Fan R Q, Wei S C . Effects of tillage mode on black soils penetration resistance and bulk density. Chin J Appl Ecol, 2012,23:439-444 (in Chinese with English abstract).
[5] Tian S Z, Ning T Y, Zhao H X, Wang B W, Li N, Han H F, Li Z J, Chi S Y . Response of CH4 and N2O emissions and wheat yields to tillage method changes in the North China plain. PLoS One, 7:e51206.
doi: 10.1371/journal.pone.0051206 pmid: 3516551
[6] 孔凡磊, 陈阜, 张海林, 黄光辉 . 轮耕对土壤物理性状和冬小麦产量的影响. 农业工程学报, 2010,26(8):150-155.
doi: 10.3969/j.issn.1002-6819.2010.08.026
Kong F L, Chen F, Zhang H L, Huang G H . Effects of rotational tillage on soil physical properties and winter wheat yield. Trans CSAE, 2010,26(8):150-155 (in Chinese with English abstract).
doi: 10.3969/j.issn.1002-6819.2010.08.026
[7] 聂良鹏, 郭利伟, 牛海燕, 魏杰, 李增嘉, 宁堂原 . 轮耕对小麦-玉米两熟农田耕层构造及作物产量与品质的影响. 作物学报, 2015,41:468-478.
doi: 10.3724/SP.J.1006.2015.00468
Nie L P, Guo L W, Niu H Y, Wei J, Li Z J, Ning T Y . Effects of rotational tillage on tilth soil structure and crop yield and quality in maize-wheat cropping system. Acta Agron Sin, 2015,41:468-478 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2015.00468
[8] 吕薇, 李军, 岳志芳, 陈宁宁, 王淑兰 . 轮耕对渭北旱塬麦田土壤有机质和全氮含量的影响. 中国农业科学, 2015,48:3186-3200.
doi: 10.3864/j.issn.0578-1752.2015.16.009
Lyu W, Li J, Yue Z F, Chen N N, Wang S L . Effects of rotational tillage on soil organic matter and soil total nitrogen contents of continuous cropping wheat field in Weibei Highland. Sci Agric Sin, 2015,48:3186-3200 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2015.16.009
[9] 薛建福, 赵鑫 ,Dikgwatlhe S B, 陈阜, 张海林 . 保护性耕作对农田碳、氮效应的影响研究进展. 生态学报, 2013,33:6006-6013.
doi: 10.5846/stxb201305121021
Xue J F, Zhao X, Dikgwatlhe S B, Chen F, Zhang H L . Advances in effects of conservation tillage on soil organic carbon and nitrogen. Acta Ecol Sin, 2013,33:6006-6013 (in Chinese with English abstract).
doi: 10.5846/stxb201305121021
[10] Huang M X, Liang T, Wang L Q, Zhou C H . Effects of no-tillage systems on soil physical properties and carbon sequestration under long-term wheat-maize double cropping system. Catena, 2015,128:195-202.
doi: 10.1016/j.catena.2015.02.010
[11] 侯贤清, 李荣, 贾志宽, 韩清芳 . 不同农作区土壤轮耕模式与生态效应研究进展. 生态学报, 2016,36:1215-1223.
doi: 10.5846/stxb201408011540
Hou X Q, Li R, Jia Z K, Han Q F . Research progress on ecological effects under the rotational tillage patterns in agricultural regions of China. Acta Ecol Sin, 2016,36:1215-1223 (in Chinese with English abstract).
doi: 10.5846/stxb201408011540
[12] He J, Li H W, Wang X Y, Li W Y, Gao H W . The adoption of annual subsoiling as conservation tillage in dryland maize and wheat cultivation in northern China. Soil Tillage Res, 2007,94:493-502.
doi: 10.1016/j.still.2006.10.005
[13] Tian S Z, Ning T Y, Wang Y, Liu Z, Li G, Li Z J . Crop yield and soil carbon responses to tillage method changes in North China. Soil Tillage Res, 2016,163:207-213.
doi: 10.1016/j.still.2016.06.005
[14] 黄鸿翔, 李书田, 李向林, 姚杰, 曹卫东, 王敏, 刘荣乐 . 我国有机肥的现状与发展前景分析. 中国土壤与肥料, 2006, ( 1):3-8.
doi: 10.11838/sfsc.20060101
Huang H X, Li S T, Li X L, Yao J, Cao W D, Wang M, Liu R L . Analysis on the status of organic fertilizer and its development strategies in China. Soil Fert Sci China, 2006, ( 1):3-8 (in Chinese with English abstract).
doi: 10.11838/sfsc.20060101
[15] Wang Y D, Hu N, Xu M G, Li Z F, Lou Y L, Chen Y, Wu C Y, Wang Z L . 23-year manure and fertilizer application increases soil organic carbon sequestration of a rice-barley cropping system. Biol Fert Soils, 2015,51:583-591.
doi: 10.1007/s00374-015-1007-2
[16] 陆海飞, 郑金伟, 余喜初, 周惠民, 郑聚锋, 张旭辉, 刘晓雨, 程琨, 李恋卿, 潘根兴 . 长期无机有机肥配施对红壤性水稻土微生物群落多样性及酶活性的影响. 植物营养与肥料学报, 2015,21:632-643.
doi: 10.11674/zwyf.2015.0310
Lu H F, Zheng J W, Yu X C, Zhou H M, Zheng J F, Zhang X H, Liu X Y, Cheng K, Li L Q, Pan G X . Microbial community diversity and enzyme activity of red paddy soil under long-term combined inorganic-organic fertilization. J Plant Nutr Fert, 2015,21:632-643 (in Chinese with English abstract).
doi: 10.11674/zwyf.2015.0310
[17] 荣勤雷, 梁国庆, 周卫, 刘东海, 王秀斌, 孙静文, 李双来, 胡诚 . 不同有机肥对黄泥田土壤培肥效果及土壤酶活性的影响. 植物营养与肥料学报, 2014,20:1168-1177.
doi: 10.11674/zwyf.2014.0513
Rong Q L, Liang G Q, Zhou W, Liu D H, Wang X B, Sun J W, Li S L, Hu C . Effects of different organic fertilization on fertility and enzyme activities of yellow clayey soil. J Plant Nutr Fert, 2014,20:1168-1177 (in Chinese with English abstract)
doi: 10.11674/zwyf.2014.0513
[18] 王玉玲, 李军 . 利于小麦-玉米轮作田土壤理化性状和作物产量的耕作方式研究. 植物营养与肥料学报, 2014,20:1139-1150.
doi: 10.11674/zwyf.2014.0510
Wang Y L, Li J . Study of tillage patterns suitable for soil physicochemical properties and crop yields in wheat-maize fields. J Plant Nutr Fert, 2014,20:1139-1150 (in Chinese with English abstract).
doi: 10.11674/zwyf.2014.0510
[19] 鲍士旦 . 土壤农业化学分析(第3版). 北京: 中国农业出版社, 2000. pp 25-114.
Bao S D. Analysis of Soil and Agricultural Chemistry, 3rd edn. Beijing: China Agriculture Press, 2000. pp 25-114(in Chinese).
[20] 关松荫 . 土壤酶及其研究法. 北京: 农业出版社, 1986. pp 274-297.
Guan S Y. Soil Enzyme and Its Research Methods. Beijing: Agriculture Press, 1986. pp 274-297(in Chinese).
[21] 范黎 . 产纤维素酶耐高温真菌在有机肥料生产中的潜在价值. 微生物学通报, 2013,40:380.
Fan L . Potential value of thermostable cellulose-producing fungi in organic fertilizer production. Microbiology, 2013,40:380 (in Chinese with English abstract).
[22] Pramod J, Nikita G, Lakaria B L, Biswas A K, Rao A S . Soil and residue carbon mineralization as affected by soil aggregate size. Soil Tillage Res, 2012,121:57-62.
doi: 10.1016/j.still.2012.01.018
[23] 谢迎新, 靳海洋, 李梦达, 翟羽雪, 王永华, 谢耀丽, 李向东, 夏来坤, 王晨阳, 郭天财, 贺德先 . 周年耕作方式对砂姜黑土农田土壤养分及作物产量的影响. 作物学报, 2016,42:1560-1568.
doi: 10.3724/SP.J.1006.2016.01560
Xie Y X, Jin H Y, Li M D, Zhai Y X, Wang Y H, Xie Y L, Li X D, Xia L K, Wang C Y, Guo T C ,He D X . Effect of annual tillage practices on soil nutrient and crop yield in Lime concretion black soil farmland. Acta Agron Sin, 2016,42:1560-1568 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.01560
[24] 张晗, 欧阳真程, 赵小敏, 郭熙, 匡丽花, 叶英聪 . 江西省不同农田利用方式对土壤碳、氮和碳氮比的影响. 环境科学学报, 2018,38:2486-2497.
doi: 10.13671/j.hjkxxb.2017.0520
Zhang H ,Ou-Yang Z C, Zhao X M, Guo X, Kuang L H, Ye Y C . Effects of different land use types on soil organic carbon, nitrogen and ratio of carbon to nitrogen in the plow layer of farmland soil in Jiangxi province. Acta Sci Circumstantiae, 2018,38:2486-2497 (in Chinese with English abstract).
doi: 10.13671/j.hjkxxb.2017.0520
[25] 潘剑玲, 代万安, 尚占环, 郭瑞英 . 秸秆还田对土壤有机质和氮素有效性影响及机制研究进展. 中国生态农业学报, 2013,21:526-535.
doi: 10.3724/SP.J.1011.2013.00526
Pan J L, Dai W A, Shang Z H, Guo R Y . Review of research progress on the influence and mechanism of field straw residue incorporation on soil organic matter and nitrogen availability. Chin J Eco-Agric, 2013,21:526-535 (in Chinese with English abstract).
doi: 10.3724/SP.J.1011.2013.00526
[26] 刘善江, 夏雪, 陈桂梅, 卯丹, 车升国, 李亚星 . 土壤酶的研究进展. 中国农学通报, 2011,27(21):1-7.
Liu S J, Xia X, Chen G M, Mao D, Che S G, Li Y X . Study progress on functions and affecting factors of soil enzymes. Chin Agric Sci Bull, 2011,27(21):1-7 (in Chinese with English abstract).
[27] 边雪廉, 赵文磊, 岳中辉, 王慧一, 焦浩, 隋海霞 . 土壤酶在农业生态系统碳、氮循环中的作用研究进展. 中国农学通报, 2016,32(4):171-178.
Bian X L, Zhao W L, Yue Z H, Wang H Y, Jiao H, Sui H X . Research process of soil enzymes effect on carbon and nitrogen cycle in agricultural ecosystem. Chin Agric Sci Bull, 2016,32(4):171-178 (in Chinese with English abstract).
[28] 邱现奎, 董元杰, 万勇善, 胡国庆, 王艳华 . 不同施肥处理对土壤养分含量及土壤酶活性的影响. 土壤, 2010,42:249-255.
Qiu X K, Dong Y J, Wang Y S, Hu G Q, Wang Y H . Effect of different fertilization treatments on soil nutrient and soil enzyme activities. Soils, 2010,42:249-255 (in Chinese with English abstract).
[29] 曾玲玲, 张兴梅, 洪音, 刘德福 . 长期施肥与耕作方式对土壤酶活性的影响. 中国土壤与肥料, 2008, (2):27-30.
doi: 10.11838/sfsc.20080207
Zeng L L, Zhang X M, Hong Y, Liu D F . Effects of long-term fertilization and tillage on soil enzyme activities. Soil Fert Sci China, 2008, (2):27-30 (in Chinese with English abstract).
doi: 10.11838/sfsc.20080207
[30] 陈娟, 马忠明, 刘莉莉, 吕晓东 . 不同耕作方式对土壤有机碳、微生物量及酶活性的影响. 植物营养与肥料学报, 2016,22:667-675.
doi: 10.11674/zwyf.15246
Chen J, Ma Z M, Liu L L, Lyu X D . Effect of tillage system on soil organic carbon, microbial biomass and enzyme activities. J Plant Nutr Fert, 2016,22:667-675 (in Chinese with English abstract).
doi: 10.11674/zwyf.15246
[31] 蒋向, 贺德先, 任洪志, 刘清瑞, 胡敏 . 轮耕对麦田土壤容重和小麦根系发育的影响. 麦类作物学报, 2012,32:711-715.
doi: 10.7606/j.issn.1009-1041.2012.04.020
Jiang X, He D X, Ren H Z, Liu Q R, Hu M . Effects of different patterns of rotational tillage on soil bulk density in wheat field and wheat root development. J Triticeae Crops, 2012,32:711-715 (in Chinese with English abstract).
doi: 10.7606/j.issn.1009-1041.2012.04.020
[32] 卢宗凡 . 中国黄土高原生态农业. 西安: 陕西科学技术出版社, 1997.
Lu Z F. Chinese Loess Plateau Ecological Agriculture. Xi’an: Shaanxi Science and Technology Press, 1997 (in Chinese).
[33] 柏炜霞, 李军, 王玉玲, 王丽 . 渭北旱塬小麦玉米轮作区不同耕作方式对土壤水分和作物产量的影响. 中国农业科学, 2014,47:880-894.
doi: 10.3864/j.issn.0578-1752.2014.05.005
Bai W X, Li J, Wang Y L, Wang L . Effects of different tillage methods on soil water and crop yield of winter wheat-spring maize rotation region in Weibei highland. Sci Agric Sin, 2014,47:880-894 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2014.05.005
[34] Hou X Q, Li R, Jia Z K, Han Q F, Wang W, Yang B P . Effects of rotational tillage practices on soil properties, winter wheat yields and water-use efficiency in semi-arid areas of north-west China. Field Crops Res, 2012,129:7-13.
doi: 10.1016/j.fcr.2011.12.021
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[9] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[12] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[13] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[14] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[15] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!