欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (12): 2135-2144.doi: 10.3724/SP.J.1006.2013.02135

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

谷子PP2C基因家族的特性

闵东红1,**,薛飞洋1, 2,**,马亚男1, 2,陈明2,徐兆师2,李连城2,刁现民2,贾冠清2,马有志2   

  1. 1西北农林科技大学农学院 / 旱区作物逆境生物学国家重点实验室,陕西杨凌712100;2中国农业科学院作物科学研究所 /农作物基因资源与基因改良国家重大科学工程 / 农业部麦类生物学与作物遗传育种重点实验室,北京100081
  • 收稿日期:2013-05-13 修回日期:2013-07-26 出版日期:2013-12-12 网络出版日期:2013-09-29
  • 通讯作者: 陈明, E-mail: chenming02@caas.cn, Tel: 13683360891
  • 基金资助:

    本研究由国家自然科学基金项目(31271715)和国家转基因新品种生物培育科技重大专项(2013ZX08002-005)项目资助。

Characteristics of PP2C Gene Family in Foxtail Millet (Setaria italica)

MIN Dong-Hong1,**,XUE Fei-Yang1,2,**,MA Ya-Nan1,2,CHEN Ming2,*,XU Zhao-Shi2,LI Lian-Cheng2,DIAO Xian-Min2,JIA Guan-Qing2,MA You-Zhi2   

  1. 1 College of Agronomy, Northwest A&F University / State Key Laboratory of Arid Region Crop Adversity Biology, Yangling 712100, China; 2 Institute of Crop Science, Chinese Academy of Agricultural Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
  • Received:2013-05-13 Revised:2013-07-26 Published:2013-12-12 Published online:2013-09-29

摘要:

PP2Cs (2C type protein phosphatases)是一种单体丝氨酸/苏氨酸蛋白磷酸酶,在真核生物中,PP2Cs在脱落酸(ABA)、茉莉酸(JA)、水杨酸(SA)等激素信号传导途径中起着重要的调控作用。本研究通过序列比对,从谷子基因组中筛选出80PP2C候选基因,聚类分析将其分为12个亚族(ABCDE1E2F1F2GHIJ)与拟南芥PP2C基因家族比对表明,A~I2个物种共有的亚族,J亚族只存在于谷子基因组中,L亚族只存在于拟南芥中。将谷子A亚族的10个成员命名为SiPP2CA1-10。基因表达谱分析表明,A亚族基因不同程度受ABA、干旱、高盐、低温和低氮诱导表达,其中,SiPP2CA6SiPP2CA85种处理下诱导表达量都高。对10A亚族成员的启动子分析发现,在这些基因的启动子序列中含有多种参与逆境胁迫应答的顺式作用元件,其中,SiPP2CA5SiPP2CA6SiPP2CA7SiPP2CA8的启动子中含有参与低氮胁迫响应的元件。进一步研究发现,SiPP2CA8主要在根部表达,且在低氮胁迫下一直有较高的表达水平。亚细胞定位结果显示SiPP2CA8定位在细胞膜、细胞质、细胞核中;双分子荧光互补试验(BiFC)结果表明,SiPP2CA8与一个ABA受体类似蛋白SiRCAR3(基因号Si018317m.g)在细胞膜、细胞质及细胞核上互作,表明SiPP2CA8在谷子中可能参与ABA信号传导过程。

关键词: 谷子, PP2C基因家族, 非生物胁迫, 表达分析

Abstract:

PP2Cs are a group of monomeric serine/threonine protein phosphatases, which play an important role in regulation of hormone signaling pathways such as abscisic acid (ABA), jasmonic acid (JA) and salicylic acid (SA) in eukaryotes. In this study, we identified 80 candidate PP2C genes from foxtail millet genome via sequence alignment, and cluster analysis showed that PP2Cs in foxtail millet were divided into 12 subfamilies (subfamily A, B, C, D, E1, E2, F1, F2, G, H, I, and J). Foxtail millet and Arabidopsis share A, B, C, D, E1, E2, F1, F2, G, H, and I, while subfamily J is only in foxtail millet and subfamily L is only in Arabidopsis. Ten members of subfamily A in foxtail millet were named as SiPP2CA1–10, and gene expression profiles showed that the expression of these genes was induced by ABA, drought, high salt, cold and low nitrogen stresses. Among them, SiPP2CA6 and SiPP2CA8 showed high expression level in all treatments. Promoter analysis identified a variety of cis-acting elements involved in stress responses in promoter region of members in subfamily A, and a specific element responding to low nitrogen stress in SiPP2CA5, SiPP2CA6, SiPP2CA7, and SiPP2CA8. Further study demonstrated that SiPP2CA8mainly expressed in root, and its expression remained at high level under low nitrogen stress. Subcellular localization showed that SiPP2CA8 waslocalized in cytomembrane, cytoplasm and nucleus. Bimolecular fluorescence complementation (BiFC) assay demonstrated that SiPP2CA8 interacted with an ABA receptor like protein, SiRCAR3 (gene locus Si018317m.g), in cytomembrane, cytoplasm and nucleus. These results suggested that SiPP2CA8 may participate in ABA signaling pathway in foxtail millet.

Key words: Foxtail millet, PP2C gene family, Abiotic stress, Expression analysis

[1]Stern A, Privman E, Rasis M, Lavi S, Pupko T. Evolution of the metazoan protein phosphatase 2C superfamily. J Mol Evol, 2007, 64: 61–70



[2]Cohen P. The structure and regijlation of protein phosphatases. Ann Rev Biochem, 1989, 58: 453–508



[3]Schweighofer A, Hirt H, Meskiene I. Plant PP2C phosphatases: emerging functions in stress signaling. Trends Plant Sci, 2004, 9: 236–243



[4]Meskiene I, Baudouin E, Schweighofer A, Liwosz A, Jonak C, Rodriguez P L, Jelinek H, Hirt H. Stress-induced protein phosphatase 2C is a negative regulator of a mitogen-activated protein kinase. J Biol Chem, 2003, 278: 18945–18952



[5]Shi Y G. Serine/threonine phosphatases: mechanism through structure. Cell, 2009, 139: 468–484



[6]Sheen J. Mutational analysis of protein phosphatase 2C involved in abscisic acid signal transduction in higher plants. Proc Natl Acad Sci USA, 1998, 95: 975–980



[7]Schweighofer A, Kazanaviciute V, Scheikl E, Teige M, Doczi R, Hirt H, Schwanninger M, Kant M, Schuurink R, Mauch F, Buchala A, Cardinale F, Meskiene I. The PP2C-type phosphatase AP2C1, which negatively regulates MPK4 and MPK6, modulates innate immunity, jasmonic acid, and ethylene levels in Arabidopsis. Plant Cell, 2007, 19: 2213–2224



[8]Nishimura N, Okamoto M, Narusaka M, Yasuda M, Nakashita H, Shinozaki K, Narusaka Y, Hirayama T. ABA hypersensitive germination2-1 causes the activation of both abscisic acid and salicylic acid responses in Arabidopsis. Plant Cell Physiol, 2009, 50: 2112–2122



[9]Hirayama T, Shinozaki K. Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. Trends Plant Sci, 2007, 12: 343–351



[10]Meyer K, Leube M P, Grill E. A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science, 1994, 264: 1452–1455



[11]Jeffrey Leung S M, and Jérôme Giraudat. The Arabidopsis ABSCISIC ACID-INSENSlTIVE2 (AB12) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell, 1997, 9: 759–771



[12]Angela Saez N A, Miguel Gonzalez Guzman, Mary Paz Gonzalez-Garcia, Carlos Nicolas, Oscar Lorenzo, Pedro L Rodriguez. Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signalling. Plant J, 2004, 37: 354–369



[13]Yoshida T, Nishimura N, Kitahata N, Kuromori T, Ito T, Asami T, Shinozaki K, Hirayama T. ABA-hypersensitive germination3 encodes a protein phosphatase 2C (AtPP2CA) that strongly regulates abscisic acid signaling during germination among Arabidopsis protein phosphatase 2Cs. Plant Physiol, 2006, 140: 115–126



[14]Nishimura N, Yoshida T, Kitahata N, Asami T, Shinozaki K, Hirayama T. ABA-Hypersensitive Germination1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed. Plant J, 2007, 50: 935–949



[15]Reyes D, Rodriguez D, Gonzalez-Garcia M P, Lorenzo O, Nicolas G, Garcia-Martinez J L, Nicolas C. Overexpression of a protein phosphatase 2C from beech seeds in Arabidopsis shows phenotypes related to abscisic acid responses and gibberellin biosynthesis. Plant Physiol, 2006, 141: 1414–1424



[16]Saavedra X, Modrego A, Rodriguez D, Gonzalez-Garcia M P, Sanz L, Nicolas G, Lorenzo O. The nuclear interactor PYL8/RCAR3 of Fagus sylvatica FsPP2C1 is a positive regulator of abscisic acid signaling in seeds and stress. Plant Physiol, 2010, 152: 133–150



[17]Liu L, Hu X, Song J, Zong X, Li D, Li D. Over-expression of a Zea mays L. protein phosphatase 2C gene (ZmPP2C) in Arabidopsis thaliana decreases tolerance to salt and drought. J Plant Physiol, 2009, 166: 531–542



[18]Liu X, Zhu Y, Zhai H, Cai H, Ji W, Luo X, Li J, Bai X. AtPP2CG1, a protein phosphatase 2C, positively regulates salt tolerance of Arabidopsis in abscisic acid-dependent manner. Biochem Biophys Res Commun, 2012, 422: 710–715



[19]Jia H F, Lu D, Sun J H, Li C L, Xing Y, Qin L, Shen Y Y. Type 2C protein phosphatase ABI1 is a negative regulator of strawberry fruit ripening. J Exp Bot, 2013 (DOI:10.1093/jxb/ert1028)



[20]Xue T T, Wang D, Zhang S Z, Ehlting J, Ni F, Jakab S, Zheng C C, Zhong Y. Genome-wide and expression analysis of protein phosphatase 2C in rice and Arabidopsis. BMC Genom, 2008, 9: 550



[21]Bhaskara G B, Nguyen T T, Verslues P E. Unique drought resistance functions of the highly ABA-induced clade A protein phosphatase 2Cs. Plant Physiol, 2012, 160: 379–395



[22]Wang Z M, Devos K M, Liu C J, Wang R Q, Gale M D. Construction of RFLP-based maps of foxtail millet, Setaria italica (L.) P. Beauv. Theor Appl Genet, 1998, 96: 31–36



[23]Doust A N, Kellogg E A, Devos K M, Bennetzen J L. Foxtail millet: a sequence-driven grass model system. Plant Physiol, 2009, 149: 137–141



[24]Bennetzen J L, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli A C, Estep M, Feng L, Vaughn J N, Grimwood J, Jenkins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang X W, Wu X M, Mitros T, Triplett J, Yang X H, Ye C Y, Mauro-Herrera M, Wang L, Li P, Sharma M, Sharma R, Ronald P C, Panaud O, Kellogg E A, Brutnell T P, Doust A N, Tuskan G A, Rokhsar D, Devos K M. Reference genome sequence of the model plant Setaria. Nat Biotechnol, 2012, 30: 555–561



[25]Zhang G Y, Liu X, Quan Z W, Cheng S F, Xu X, Pan S K, Xie M, Zeng P, Yue Z, Wang W L, Tao Y, Bian C, Han C L, Xia Q J, Peng X H, Cao R, Yang X H, Zhan D L, Hu J C, Zhang Y X, Li H N, Li H, Li N, Wang J Y, Wang C C, Wang R Y, Guo T, Cai Y J, Liu C Z, Xiang H T, Shi Q X, Huang P, Chen Q C, Li Y R, Wang J, Zhao Z H, Wang J. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol, 2012, 30: 549–554



[26]Yoo S D, Cho Y H, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Prot, 2007, 2: 1565–1572



[27]Loppes R, Radoux M. Abscisic acid biosynthesis and catabolism. Ann Rev Plant Biol, 2005, 56: 165–185



[28]Lim C W, Kim J H, Baek W, Kim B S, Lee S C. Functional roles of the protein phosphatase 2C, AtAIP1, in abscisic acid signaling and sugar tolerance in Arabidopsis. Plant Sci, 2012, 187: 83–88



[29]Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science, 2009, 324: 1064–1068

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[3] 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885.
[4] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[5] 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279.
[6] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[7] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
[8] 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069.
[9] 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137.
[10] 马贵芳, 满夏夏, 张益娟, 高豪, 孙朝霞, 李红英, 韩渊怀, 侯思宇. 谷子穗发育期转录组与叶酸代谢谱联合分析[J]. 作物学报, 2021, 47(5): 837-846.
[11] 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649.
[12] 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415.
[13] 牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2021, 47(12): 2348-2361.
[14] 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406.
[15] 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!