欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (04): 739-744.doi: 10.3724/SP.J.1006.2014.00739

• 研究简报 • 上一篇    下一篇

中国绿豆核心种质资源在不同环境下的表型变异及生态适应性评价

王丽侠1,程须珍1,*,王素华1,朱旭2,刘振兴3   

  1. 1中国农业科学院作物科学研究所,北京 100081; 2河南省南阳市农业科学研究所, 河南南阳 473083; 3河北省唐山市农业科学研究院,河北唐山063000
  • 收稿日期:2013-10-12 修回日期:2014-01-12 出版日期:2014-04-12 网络出版日期:2014-02-14
  • 通讯作者: 程须珍, E-mail: chengxuzhen@caas.cn
  • 基金资助:

    本研究由国家现代农业产业技术体系建设专项(CARS-09),国家“十二五”科技支撑计划重大项目(2013BAD01B03-18)和中国农业科学院科技创新工程资助。

Adaptability and Phenotypic Variation of Agronomic Traits in Mungbean Core Collection under Different Environments in China

WANG Li-Xia1,CHENG Xu-Zhen1,WANG Su-Hua1,ZHU Xu2,LIU Zhen-Xing3   

  1. 1 Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 Nanyang Institute of Agricultural Sciences, Nanyang 473083, China; 3 Tangshan Institute of Agricultural Sciences, Tangshan 063000, China
  • Received:2013-10-12 Revised:2014-01-12 Published:2014-04-12 Published online:2014-02-14
  • Contact: 程须珍, E-mail: chengxuzhen@caas.cn

摘要:

明确我国绿豆种质资源在不同生态条件下的表型变异及生态适应性,可有效提高其在遗传育种中的利用效率。本研究分别在北京海淀、河北唐山和河南南阳3个生态环境下开展了绿豆核心种质农艺性状的评价。结果表明,绿豆生长习性、结荚习性受生态环境的影响较大,其中仅39.4%的种质在3个试点均表现直立生长;并非所有直立生长的种质均具有限结荚习性。绿豆核心种质在各试点均能成熟,但生育期、株高、主茎分枝等数量性状在试点间差异较大;不同种质在试点间的变化趋势存在差异,并据此筛选出适宜不同生态区域的优异种质26份,以备当地生产利用。混合线性模型分析表明,不同性状的基因型、环境互作等效应存在差异,其中基因型效应在荚长(0.57)、百粒重(0.51)的变异中占重要比率,环境效应在生育期(0.39)的变异中占较大比例,而剩余效应则是主茎分枝(0.62)、单株荚数(0.53)、单荚粒数(0.70)等性状的重要影响因子。最后根据不同绿豆种质农艺性状对生态条件反应的差异,筛选出综合农艺性状均具一定环境稳定性的种质4份,以供广适性育种利用。

关键词: 绿豆, 核心样本, 农艺性状变异, 生态适应性, 混合线性模型

Abstract:

Mungbean (Vigna radiata L. Wilczek) is an important traditional pulse crop in China. However, its genetic breeding is much lagged. There are abundant mungbean germplasm resources conserved in the national gene bank. It is essential to evaluate diversity and adaptability of germplasm resources for their accelerating use in genetic breeding. In the present study, we assessed the genetic variations and environmental adaptability of mungbean core collection at Haidian of Beijing, Tangshan of Hebei, and Nanyang of Henan province, respectively. The results showed that growth habit and podding habit were affected by eco-environments, but they were not always agreeable with each other, some erect materials in growth were indeterminate in podding, and some erect in growth in south region performed climbing in north regions. All accessions in the core collection were mature at different eco-regions, but their growth period, plant height, number of branch per plant, number of pod per plant, number of seed per pod, pod length and 100-seed-weight, varied greatly in different regions. Based on these quantitative traits, we selected 26 germplasm as elite ones that may be useful for local production or breeding. According to the Mixed linear model, the effects of genetic composition for the seven quantitative traits were also analyzed. The results showed that there were differences among accessions and environment effects, and the genotypic effects were higher on pod length and 100-seed weight than on other traits, while environmental effects was the highest on growth period. The residued effects were the highest on the number of seeds per pod, while the interaction effect between genotypes or phenotypes not significant for any two of the seven traits. The environmental adaptability for all the traits was also analyzed by using Jackknife repeated sampling, and four useful in breeding for variety with wide adaptability were selected.

Key words: Vigna radiata, Core collection, Genetic variations, Environmental adaptation, Mixed linear model

[1]郑卓杰. 中国食用豆类品种资源目录(I). 北京: 中国农业科技出版社, 1987



Zheng Z J. Catalogues of Chinese Food Legumes Germplasm and Resources I. Beijing: China Agricultural Science and Technology Press, 1987 (in Chinese)



[2]郑卓杰. 中国食用豆类品种自源目录(II). 北京: 农业出版社, 1990



Zheng Z J. Catalogues of Chinese Food Legumes Germplasm and Resources II. Beijing: China Agricultural Press, 1990 (in Chinese)



[3]胡家蓬, 程须珍, 王佩芝. 中国食用豆类品种资源目录(III). 北京: 中国农业出版社, 1996



Hu J P, Cheng X Z, Wang P Z. Catalogues of Chinese Food Legumes Germplasm and Resources III. Beijing: China Agricultural Press, 1996 (in Chinese)



[4]王丽侠, 程须珍, 王素华. 绿豆种质资源、育种及遗传研究进展. 中国农业科学, 2009, 42: 1519–1527



Wang L X, Cheng X Z, Wang S H. Advances in Research on Genetic Resources, Breeding and Genetics of Mungbean (Vigna radiata L.). Sci Agric Sin, 2009, 42: 1519–1527 (in Chinese with English abstract)



[5]程须珍, 王述民. 中国食用豆类品种志. 北京: 中国农业科技出版社, 2009



Cheng X Z, Wang S M. Records of Chinese Food Legumes Cultivars. Beijing: China Agricultural Press, 2009 (in Chinese)



[6]Das A, Biswas M, Dastidar K K G. Genetic divergence in green gram (Vigna radiata L. Wilczek). J Agron, 2010, 9: 126–130



[7]Katiyar P K, Dixit G P. Assessment of genetic divergence in green gram (Vigna raidata) germplasm. Ind J Agric Sci, 2011, 81: 79–81



[8]Singh S K, Singh I P, Singh B B, Singh O. Genetic divergence in mungbean (Vigna radiata L. Wilczek). Legume Res, 2009, 32: 98–102



[9]Saini M, Singh S, Hussain Z, Yadav A. RAPD analysis in mungbean [Vigna radiata L. Wilczek]: I. Assessment of genetic diversity. Ind J Biotech, 2010, 9: 137–146



[10]Somta P, Sommanas W, Srinives P. Molecular diversity assessment of AVRDC-the world vegetable center elite-parental mungbeans. Breed Sci, 2009, 59: 149–157



[11]Afzal M A, Haque M M, Shanmugasundaram S. Random amplified polymorphic DNA (RAPD) analysis of selected mungbean [Vigna radiata L. Wilczek] cultivars. Asia J Plant Sci, 2004, 3: 20–24



[12]Lavanya G R, Srivastava J, Ranade S A. Molecular assessment of genetic diversity in mungbean germplasm. J Genet, 2008, 87: 65–74



[13]Bisht I S, Mahajan R K, Patel D P. The use of characterization data to establish the Indian mungbean core collection and assessment of genetic diversity. Genet Res Crop Evol, 1998, 45: 127–133



[14]程须珍, 王素华, 王泮龙. 绿豆优异种质资源研究初报. 作物品种资源, 1995, (3): 16–19



Cheng X Z, Wang S H, Wang P L. The primary study of elite mungbean germplasm. Plant Genet Resour, 1995, (3): 16–19 (in Chinese with English abstract)



[15]程须珍, 王素华. 中国绿豆品种资源研究. 作物品种资源, 1998, (4): 9–11



Cheng X Z, Wang S H. The study of mungbean germplasm resources. Plant Genet Resour, 1998, (4): 9–11 (in Chinese with English abstract)



[16]刘长友, 程须珍, 王素华, 王丽侠, 孙蕾, 梅丽, 徐宁. 中国绿豆种质资源遗传多样性研究. 植物遗传资源学报, 2006, 7: 459–463



Liu C Y, Cheng X Z, Wang S H, Wang L X, Sun L, Mei L, Xu N. The genetic diversity of mungbean germplasm in China. J Plant Genet Resour, 2006, 7: 459–463 (in Chinese with English abstract)



[17]刘长友, 王素华, 王丽侠, 孙蕾, 梅丽, 徐宁, 程须珍. 中国绿豆种质资源初选核心种质构建. 作物学报, 2008, 34: 700–705



Liu C Y, Wang S H, Wang L X, Sun L, Mei L, Xu N, Cheng X Z. Establishment of candidate core collection in Chinese mungbean germplasm resources. Acta Agron Sin, 2008, 34: 700–705 (in Chinese with English abstract)



[18]王丽侠, 程须珍, 王素华, 李金榜, 李金秀. 中国绿豆应用型核心种质农艺性状的分析. 植物遗传资源学报, 2009, 10: 589–593



Wang L X, Cheng X Z, Wang S H, Li J B, Li J X. Genetic variability of agronomic traits in mungbean applied core collection of China. J Plant Genet Resour, 2009, 10: 589–593 (in Chinese with English abstract)



[19]郑卓杰. 中国食用豆类学. 北京: 中国农业出版社, 1997



Zheng Z J. Chinese Legumes. Beijing: China Agriculture Press, 1997 (in Chinese)



[20]程须珍, 王素华, 王丽侠. 绿豆种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006



Cheng X Z, Wang S H, Wang L X. Descriptors and data standard for mungbean (Vigna radiata L. Wilczek). Beijing: China Agriculture Press, 2006 (in Chinese)



[21]朱军. 估算遗传方差和协方差的混合模型方法. 生物数学学报, 1992, 7: 1–11



Zhu J. Mixed model approaches for estimating genetic variances and co-variances. J Biomathemat, 1992, 7: 1–11 (in Chinese with English abstract)



[22]朱军. 广义遗传模型与数量遗传分 析新方法. 浙江大学学报, 1994, 20: 551–559



Zhu J. General genetic models and new analysis methods for quantitative traits. J Zhejiang Agric Univ, 1994, 20: 551–559 (in Chinese with English abstract)



[23]朱军. 遗传模型分析方法. 北京: 中国农业出版社, 1997



Zhu J. Analysis Methods for Genetic Models. Beijing: China Agriculture Press, 1997 (in Chinese)



[24]胡家蓬, 王佩芝, 程须珍. 中国食用豆类优异资源. 北京: 中国农业出版社, 1998



Hu J P, Wang P Z, Cheng X Z. Elite Germplasm of Chinese Food Legume. Beijing: China Agriculture Press, 1998 (in Chinese)



[25]刘长友, 程须珍, 王素华, 王丽侠, 孙蕾, 梅丽, 徐宁. 用于绿豆种质资源遗传多样性分析的SSR及STS标记的筛选. 植物遗传资源学报, 2007, 8: 298–302



Liu C Y, Cheng X Z, Wang S H, Wang L X, Sun L, Mei L, Xu N. The screening of SSR and STS markers for genetic diversity analysis of mungbean germplasm. J Plant Genet Resour, 2007, 8: 298–302 (in Chinese with English abstract)



[26]王丽侠, 程须珍, 王素华. 小豆SSR引物在绿豆基因组中的通用性分析. 作物学报, 2009, 35: 816–820



Wang L X, Cheng X Z, Wang S H. Transferability of SSR from adzuki bean to mungbean. Acta Agron Sin, 2009, 35: 816–820 (in Chinese with English abstract)

[1] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379.
[2] 党科, 宫香伟, 吕思明, 赵冠, 田礼欣, 靳飞, 杨璞, 冯佰利, 高小丽. 糜子/绿豆间作模式下施氮量对绿豆叶片光合特性及产量的影响[J]. 作物学报, 2021, 47(6): 1175-1187.
[3] 吴然然, 林云, 陈景斌, 薛晨晨, 袁星星, 闫强, 高营, 李灵慧, 张勤雪, 陈新. 绿豆雄性不育突变体msm2015-1的遗传学与细胞学分析[J]. 作物学报, 2021, 47(5): 860-868.
[4] 叶卫军,陈圣男,杨勇,张丽亚,田东丰,张磊,周斌. 绿豆SSR标记的开发及遗传多样性分析[J]. 作物学报, 2019, 45(8): 1176-1188.
[5] 于奇,冯乃杰,王诗雅,左官强,郑殿峰. S3307对始花期和始粒期淹水绿豆光合作用及产量的影响[J]. 作物学报, 2019, 45(7): 1080-1089.
[6] 王宏民,成小芳,樊艳平,郑海霞,张耀文,张仙红. 绿豆不同品种对绿豆象的抗性初探[J]. 作物学报, 2018, 44(8): 1136-1141.
[7] 樊艳平,成小芳,王宏民,张耀文,张仙红. 四个抗豆象绿豆品种的胰蛋白酶抑制剂稳定性[J]. 作物学报, 2018, 44(6): 867-875.
[8] 刘长友,苏秋竹,范保杰,曹志敏,张志肖,武晶,程须珍,田静. 栽培绿豆V1128抗豆象基因定位[J]. 作物学报, 2018, 44(12): 1875-1881.
[9] 王兰芬, 武晶, 王昭礼, 陈吉宝, 余莉, 王强, 王述民. 普通菜豆种质资源不同环境下表型差异及生态适应性评价[J]. 作物学报, 2018, 44(03): 357-368.
[10] 樊艳平,张耀文,赵雪英,张仙红. 抗豆象绿豆胰蛋白酶抑制剂活性及理化性质[J]. 作物学报, 2017, 43(11): 1696-1704.
[11] 王建花,张耀文,程须珍,王丽侠. 绿豆分子遗传图谱构建及若干农艺性状的QTL定位分析[J]. 作物学报, 2017, 43(07): 1096-1102.
[12] 徐宁,陈冰嬬,王明海,包淑英,王桂芳,郭中校. 绿豆品种资源萌发期耐碱性鉴定[J]. 作物学报, 2017, 43(01): 112-121.
[13] 冯建英,温阳俊,张瑾,章元明. 植物关联分析方法的研究进展[J]. 作物学报, 2016, 42(07): 945-956.
[14] 王兰芬,武晶,景蕊莲,程须珍,王述民. 绿豆种质资源成株期抗旱性鉴定[J]. 作物学报, 2015, 41(08): 1287-1294.
[15] 王兰芬,武晶,景蕊莲,程须珍,王述民. 绿豆种质资源苗期抗旱性鉴定[J]. 作物学报, 2015, 41(01): 145-153.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!