欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (04): 745-750.doi: 10.3724/SP.J.1006.2014.00745

• 研究简报 • 上一篇    下一篇

BnMAPK1超量表达提高甘蓝型油菜菌核病抗性

王淑文,陆俊杏,万华方,翁昌梅,王珍,李加纳,卢坤,梁颖*   

  1. 西南大学农学与生物科技学院 / 重庆市油菜工程技术研究中心 / 南方山地农业教育部工程研究中心,重庆400715
  • 收稿日期:2013-07-03 修回日期:2014-01-12 出版日期:2014-04-12 网络出版日期:2014-02-14
  • 通讯作者: 梁颖, E-mail: yliang@swu.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(31271756, 31171619)和高等学校学科创新引智计划(111计划)项目(B12006)资助。

Overexpression of BnMAPK1 Enhances Resistance to Sclerotinia sclerotiorum in Brassica napus

WANG Shu-Wen,LU Jun-Xing,WAN Hua-Fang,WENG Chang-Mei,WANG Zhen,LI Jia-Na,LU KunLIANG Ying*   

  1. College of Agronomy and Biotechnology, Southwest University / Chongqing Rapeseed Engineering & Technology Research Center / Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
  • Received:2013-07-03 Revised:2014-01-12 Published:2014-04-12 Published online:2014-02-14
  • Contact: 梁颖, E-mail: yliang@swu.edu.cn

摘要:

植物MAPKs (mitogen-activated protein kinases)在多种生物和非生物胁迫中起重要作用。课题组前期克隆了甘蓝型油菜BnMAPK1基因,并获得BnMAPK1超量表达植株。本文以甘蓝型油菜中油821DH系为对照,以超量表达BnMAPK1的转基因油菜为试材,采用离体叶片接种的方法,测定染病叶片病斑的大小及病斑周围叶片的草酸含量,并用qRT-PCR检测转基因植株4个病程相关蛋白(OXOCu/ZnSODPR2PR3)编码基因在核盘菌胁迫下的相对表达动态变化。结果表明,甘蓝型油菜BnMAPK1超量表达可显著抑制核盘菌对离体叶片的侵染,控制染病叶片内草酸毒素的积累,可能可以解除核盘菌对OXO表达的负调控,使另外3个病程相关蛋白基因(Cu/ZnSODPR2PR3)表达上调。表明BnMAPK1超量表达可有效提高油菜菌核病抗性。

关键词: BnMAPK1, 甘蓝型油菜, 菌核病, 抗性, 病程相关基因

Abstract:

Plant MAPKs (mitogen-activated protein kinases) play an important role in defense to biotic and abiotic stresses. In our previous studies, BnMAPK1 was cloned in Brassica napus and transgenic oilseed rape plants overexpressing BnMAPK1 were obtained. In this study, B. napus ZY821DH line was used as control and the corresponding transgenic plants overexpressing BnMAPK1 were used as experimental materials. The resistance to S. sclerotiorum and oxalic acid content were testedby using detached leaves inoculated with the pathogen. The dynamic changes of the relative expression of four pathogenesis-related genes, OXO, Cu/ZnSOD, PR2, and PR3were detected in the leaves inoculated with the pathogen. The results showed that the overexpression of BnMAPK1 significantly inhibited the invasion of the pathogen, controlled the accumulation of oxalic acid in the inoculated leaves, and maybe finally relieved the negative regulation of OXO expression caused by the pathogen and up-regulated the expression of the other three genes, Cu/Zn SOD, PR2, and PR3. The results indicated that overexpression of BnMAPK1 can effectively improve the resistance to S. sclerotiorum in oilseed rape.

Key words: BnMAPK1, Brassica napus, Sclerotinia rot, Resistance, Pathogenesis-related genes

[1]Colcombet J, Hirt H. Arabidopsis MAPKs: a complex signaling network involved in multiple biological processes. Biochem J, 2008, 413: 217–226



[2]朱斌, 梁颖. 植物MAPK C族基因的研究进展. 生物技术通报, 2012, (11): 27–28



Zhu B, Liang Y. Progress of study on plant’s MAPK genes of group C. Biotech Bull, 2012, (11): 27–28 (in Chinese with English abstract)



[3]Rohila J S, Yang Y N. Rice mitogen-activated protein kinase gene family and its role in biotic and abiotic stress response. J Integr Plant Biol, 2007, 49: 751–759



[4]谷令坤. 玉米根系ZmOSMAPK1基因分离、功能鉴定及信号转导作用. 山东农业大学博士论文, 2006



Gu L K. Isolation and Function Identification of a Novel Mitogen-Activated Protein Kinase Gene, ZmOSMAPK1, in Maize Roots and Role in Plant Signal Transduction. PhD Dissertation of Shandong Agricultural University, 2006 (in Chinese with English abstract)



[5]李方球, 官春云. 油菜菌核病抗性鉴定、抗性机理及抗性遗传育种研究进展. 作物研究, 2001, 15(3): 85–92



Li F Q, Guan C Y. Research progress of identification, mechanism and genetic breeding of Brassica napus against Sclerotinia sclerotiorum. Crop Res, 2001, 15(3): 85–92 (in Chinese with English abstract)



[6]万华方, 刘瑶, 梅家琴, 丁一娟, 梁颖, 曲存民, 卢坤, 李加纳, 钱伟. 人工合成高抗菌核病甘蓝型油菜几种关键酶编码基因的表达与其抗性的关系. 中国农业科学, 2012, 45: 4543–4551



Wan H F, Liu Y, Mei J Q, Ding Y J, Liang Y, Qu C M, Lu K, Li J N, Qian W. Relationship between the expression of genes encoding resistance-related enzymes and the resistance to Sclerotinia sclerotiorumin resynthesized Brassica napus with high level of resistance. Sci Agric Sin, 2012, 45: 4543–4551 (in Chinese with English abstract)



[7]Mei J Q, Qian L W, Disi J O, Yang X R, Li Q F, Li J N, Frauen M, Cai D, Qian W. Identification of resistant sources against Sclerotina sclerotiorum in Brassica species with emphasis on B. oleracea. Euphytica, 2011, 177: 393–399



[8]俞乐, 彭新湘, 杨崇, 刘拥海, 范燕萍. 反相高效液相色谱法测定植物组织及根分泌物中草酸. 分析化学研究简报, 2002, 9: 1119–1122



Yu L, Peng X X, Yang C, Liu Y H, Fan Y P. Determination of oxalic acid in plant tissue and root exudate by reversed phase high performance liquid chromatography. Chin J Anal Chem, 2002, 9: 1119–1122 (in Chinese with English abstract)



[9]Shivani Y A K, Srivastava D P, Singh D K A. Isolation of oxalic acid tolerating fungi and decipherization of its potential to control Sclerotinia sclerotiorum through oxalate oxidase like protein. World J Microbiol Biotechnol, 2012, 28: 3197–3206



[10]Andreas W, Irmgard Z S, Simone T, Andreas K. Reactive oxygen intermediates and oxalic acid in the pathogenesis of the necrotrophic fungus Sclerotinia sclerotiorum. Plant Pathol, 2008, 120: 317–330



[11]Rai J N, Dhawan S. Studies on purification and identification of toxic metabolite produced by Sclerotinia sclerotiorum causing white rot disease of crucifers. Ind Phytopathil, 1976, 29: 407–411



[12]刘胜毅. 草酸法筛选油菜抗菌核病材料的效果及其影响因素. 植物保护学报, 1998, 25: 56–59



Liu S Y. Oxalic screening of rape resistance to the effect of the material and its influencing factors. Acta Phytophyl Sin, 1998, 25: 56–59 (in Chinese with English abstract)



[13]吴纯仁, 刘后利. 油菜菌核病的致病机制: Ⅲ. 罹病组织内草酸毒素积累和分布的初步分析. 植物病理学报, 1991, 21: 135–140



Wu C R, Liu H L. Pathogenesis of Sclerotinia sclerotiorum: III. The oxalate accumulation of toxins in diseased tissues and preliminary analysis of the distribution. Acta Phytopathol Sin, 1991, 21: 135–140 (in Chinese with English abstract)



[14]赵丹丹, 臧新, 田保明, 顾建伟. 菌核菌及油菜菌核病相关研究进展. 河南农业科学, 2010, (2): 120–122



Zhao D D, Zang X, Tian B M, Gu J W. Research progress of Sclerotium fungus and Sclerotinia sclerotiorum. Henan Agric Sin, 2010, (2): 120–122 (in Chinese with English abstract)



[15]Leon J, Lawton M A, Raskin I. Hydrogen peroxide stimulates salicylic acid biosynthesis in tobacco. Plant Physiol, 1995, 108: 1673–1678



[16]Alvarez M E, Penndll R I, Meijer P J. Reactive oxygen intermediates mediate a systemic signal networks in the establishment of plant immunity. Cell, 1998, 92: 773–784



[17]Thompson C, Dunwell J M, Johnstone C E, Lay V, Ray J, Schmitt M, Watson H, Nisbet G. Degradation of oxalic acid by transgenic oilseed rape plants expressing oxalate oxidase. Euphytica, 1995, 85: 169–172



[18]Dong X B, Ji R Q, Guo X L, Foster S J, Chen H, Dong C H, Liu Y Y, Hu Q, Liu S Y. Expressing a gene encoding wheat oxalate oxidase enhances resistance to Sclerotinia sclerotiorum in oilseed rape (Brassica napus). Planta, 2008, 288: 331–340



[19]Chipps T J, Gilmore B, Myers J R, Stotz H U. Relationship between oxalate, oxalate oxidase activity, oxalate sensitivity, and white mold susceptibility in Phaseolus coccineus. Phytopathology, 2005, 95: 292–299



[20]Donaldson P A, Anderson T, Lane B G, Davidson A L, Simmonds D H. Soybean plants expressing an active oligomeric oxalate oxidase from the wheat gf-2.8 (germin) gene are resistant to the oxalate-secreting pathogen Sclerotinia sclerotiorum. Physiol Mol Plant Pathol, 2001, 59: 297–307



[21]Livingstone D M, Hampton J L, Phipps P M, Grabau E A. Enhancing resistance to Sclerotinia minor in peanut by expressing a barley oxalate oxidase gene. Plant Physiol, 2005, 137: 1354–1362



[22]Liang Y, Srivastava S, Rahaman M H, Strelkov S E, Kav N N. Proteome changes in leaves of Brassica napus L. as a result of Sclerotinia sclerotiorum challenge. J Agric Food Chem, 2008, 56: 1963–1976



[23]齐绍武, 官春云, 刘春林. 甘蓝型油菜品系一些酶的活性与抗菌核病的关系. 作物学报, 2004, 30: 270–273



Qi S W, Guan C Y, Liu C L. Relationship between some enzyme activity and resistance to Sclerotinia sclerotiorum of rapeseed cultivars. Acta Agron Sin, 2004, 30: 270–273 (in Chinese with English abstract)



[24]王雅平, 刘伊强, 施磊, 潘乃穟, 陈章良. 小麦对赤霉病抗性不同品种的SOD活性. 植物生理学报, 1993, 19: 353–358



Wang Y P, Liu Y Q, Shi L, Pan N S, Chen Z L. SOD activity of wheat varieties with different resistance to scab. Acta Phytophysiol Sin, 1993, 19: 353–358 (in Chinese with English abstract)



[25]云兴福, 李荣禧. 用抗病体子叶SOD同功酶蛋白质诱导黄瓜对霜霉病抗性的研究. 植物病理学报, 1997, 27: 221–224



Yun X F, Li R X. Studies of induced resistance to downy mildew of cucumber with SOD isozyme protein in cotyledons. Acta Phytopathol Sin, 1997, 27: 221–224 (in Chinese with English abstract)



[26]牛立元, 王鸿升, 石明旺. 小麦叶片SOD、POD活性与白粉病抗性关系. 河南职业技术师范学院学报, 2004, 32(4): 5–8



Niu L Y, Wang H S, Shi M W. Changes of SOD and POD activities in wheat leaves infected by wheat powdery mildew and their relations to resistance. J Henan Voction-Technical Coll, 2004, 32(4): 5–8 (in Chinese with English abstract)



[27]杨鸯鸯, 李云, 丁勇, 徐春雷, 张成桂, 刘英, 甘莉. 甘蓝型油菜Cu/ZnSOD和FeSOD基因的克隆及菌核病菌诱导表达. 作物学报, 2009, 35: 71–78



Yang Y Y, Li Y, Ding Y, Xu C L, Zhang C G, Liu Y, Gan L. Cloning of Cu/Zn-superoxide dismutase of Brassica napus and its induced expression by Sclerotinia sclerotiorum. Acta Agron Sin, 2009, 35: 71–78 (in Chinese with English abstract)



[28]Egea C, Alcazar M D, Candeland M E. β-1,3-glucanase and chitinase as pathogenesis-related proteins in the defense reaction of two Capsicum annuum cultivars infected with cucumber mosaic virus. Biologia Plant, 1996, 38: 437–443



[29]蔡新忠. 植物病程相关蛋白. 植物生理学通讯, 1995, 31: 129–136



Cai X Z. Plant pathogenesis-related proteins. Plant Physiol, 1995, 31: 129–136 (in Chinese with English abstract)



[30]蓝海燕. 表达β-1,3-葡聚糖酶及几丁质酶基因的转基因烟草及其抗真菌病的研究. 遗传学报, 2000, 27: 70–77



Lan H Y. The study of the anti-fungal disease about the expression of β-1,3-glucanase and chitinase genes in transgenic tobacco. Acta Genet Sin, 2000, 27: 70–77 (in Chinese with English abstract)

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080.
[4] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[5] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[6] 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564.
[7] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[8] 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634.
[9] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[10] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[11] 张思梦, 倪文荣, 吕尊富, 林燕, 林力卓, 钟子毓, 崔鹏, 陆国权. 影响甘薯收获期软腐病发生的指标筛选[J]. 作物学报, 2021, 47(8): 1450-1459.
[12] 习玲, 王昱琦, 朱微, 王益, 陈国跃, 蒲宗君, 周永红, 康厚扬. 78份四川小麦育成品种(系)条锈病抗性鉴定与抗条锈病基因分子检测[J]. 作物学报, 2021, 47(7): 1309-1323.
[13] 左香君, 房朋朋, 李加纳, 钱伟, 梅家琴. 有毛野生甘蓝(Brassica incana)抗蚜虫特性研究[J]. 作物学报, 2021, 47(6): 1109-1113.
[14] 马燕斌, 王霞, 李换丽, 王平, 张建诚, 文晋, 王新胜, 宋梅芳, 吴霞, 杨建平. 玉米光敏色素A1基因(ZmPHYA1)在棉花中的转化及分子鉴定[J]. 作物学报, 2021, 47(6): 1197-1202.
[15] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!