作物学报 ›› 2014, Vol. 40 ›› Issue (04): 751-759.doi: 10.3724/SP.J.1006.2014.00751
• 研究简报 • 上一篇
刘臣**,陆建农**,殷学贵*,毕川,文淡悠,郑军,刘帅,石卓兴,成粤湘
LIU Chen**,LU Jian-Nong**,YIN Xue-Gui*,BI Chuan,WEN Dan-You,ZHENG Jun,LIU Shuai,SHI Zhuo-Xing,and CHENG Yue-Xiang
摘要:
用YC2(高杆)×YF1(矮杆)和YC1(高杆)×YF1(矮杆)组合衍生的2个F2代群体, 对蓖麻株高性状进行相关、回归和QTL定位分析。结果表明, 株高与主穗位高、主茎节长和主茎茎粗之间显著正相关, 但与主茎节数不相关;主穗位高与主茎节数、主茎节长和主茎茎粗之间显著正相关;主茎节数与主茎节长之间显著负相关。利用QTLNetwork 2.0软件在YC2×YF1的F2群体中检测到株高、主穗位高、主茎节数、主茎节长和主茎茎粗的5、4、6、3和2个QTL, 分别解释了45.9%、45.3%、66.1%、55.4%和12.6%的总变异。在YC1×YF1的F2群体中检测到3、4、5、1和2个上述5性状的QTL, 分别解释了26.0%、25.5%、35.4%、37.4%和7.6%的总变异。证明QTL间的“一因多效”和连锁是株高、主穗位高和主茎节长之间高度相关的遗传基础, 加性效应是株高、主穗位高和主茎节长的主要遗传组分, 互作效应是主茎节数和主茎茎粗的主要遗传组分。建议育种上将主穗位高和主茎节长作为株高早期选择和预测的间接指标,并将多节数和短节间作为高产育种的主攻方向。
[1]Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, MaeharaY, Tanji M, Sato M, Nasu S, Minobe Y. Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res, 2002, 9: 11–17[2]Peng J, Richards D E, Hartley N M, Munrphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou Snape J, Gale M D, Harberd N P. “Green Revolution” gene encode mutant bibberelin response modnlators. Nature, 1999, 400: 256–261[3]杨松杰, 张晓科, 何中虎, 夏先春, 周阳. 用STS标记检测矮秆基因Rht–B1b和Rht–D1b在中国小麦中的分布. 中国农业科学, 2006, 39: 1680–1688Yang S J, Zhang X K, He Z H, Xia X C, Zhou Y. Distribution of dwarfing genes Rht–B1b and Rht–D1b in Chinese bread wheats detected by STS marker. Sci Agric Sin, 2006, 39: 1680–1688 (in Chinese with English abstract)[4]嵇怡, 缪旻珉, 陈学好. 植物矮生性状的分子遗传研究进展. 分子植物育种, 2006, 4: 753–771Ji Y, Miao M M, Chen X H. Progresses on the molecular genetics of dwarf character in plants. Mol Plant Breed, 2006, 4: 753–771 (in Chinese with English abstract)[5]李卓坤, 谢全刚, 朱占玲, 刘金良, 韩淑晓, 田宾, 袁倩倩, 田纪春. 基于QTL定位分析小麦株高的杂种优势. 作物学报, 2010, 36: 771−778Li Z K, Xie Q G, Zhu Z L, Liu J L, Han S X, Tian B, Yuan Q Q, Tian J C. Analysis of plant height heterosis based on QTL mapping in wheat. Acta Agron Sin, 2010, 36: 771−778 (in Chinese with English abstract)[6]杨芳萍, 夏先春, 张勇, 张晓科, 刘建军, 唐建伟, 杨学明, 张俊儒, 刘茜, 李式昭, 何中虎. 光周期和矮秆基因在不同国家小麦品种中的分布及其效应. 作物学报, 2012, 38: 1155−1166Yang F P, Xia X C, Zhang Y, Zhang X K, Liu J J, Tang J W, Yang X M, Zhang J R, Liu Q, Li S Z, He Z H. Distribution of allelic variation for vernalization, photoperiod, and dwarfing genes and their effects on growth period and plant height among cultivars from major wheat producing countries. Acta Agron Sin, 2012, 38: 1155−1166 (in Chinese with English abstract)[7]高奋明, 姜勇, 孔德伟, 李仕贵. 水稻株高的遗传控制及其在育种上的应用. 分子植物育种, 2005, 3: 87–93Gao F M, Jiang Y, Kong D W, Li S G. Genetic control of plant height and its utilization in rice. Mol Plant Breed, 2005, 3: 87–93 (in Chinese with English abstract)[8]邢永忠, 徐才国, 华金平, 谈移芳, 孙新立. 水稻株高和抽穗期基因的定位和分离. 植物学报, 2001, 43: 721–726Xing Y Z, Xu C G, Hua J P, Tan Y F, Sun X L. Mapping and isolation of quantitative trait loci controlling plant height and heading date in rice. Acta Bot Sin, 2001, 43: 721–726 (in Chinese with English abstract)[9]姜树坤, 黄成, 徐正进, 陈温福. 粳稻株高QTL与赤霉素和油菜素内酯合成及信号转导基因相关分析. 中国农业科学, 2010, 43: 2829–2938Jiang S K, Huang C, Xu Z J, Cheng W F. Relationship between QTLs for plant height and its components and genes controlling gibberellin and brassinosteroid biosynthesis and their transduction in japonica rice (Oryza sativa L.). Sci Agric Sin, 2010, 43: 2829–2938 (in Chinese with English abstract)[10]Lavanya C, Gopinath V. Inheritance studies for morphological characters and sex expression in pistillate lines of castor (Ricinus communis L.). Indian J Genet Plant Breed, 2008, 68: 275–282[11]李金琴, 朱国立, 何智彪, 张智勇, 贾娟霞, 乔文杰, 李靖霞. 蓖麻矮秆性状基因遗传规律研究. 内蒙古农业科技, 2010, (1): 54–56Li J Q, Zhu G L, He Z B, Zhang Z Y, Jia J X, Qiao W J, Li J X. Study on the genetic regularity of castor bean dwarf characters gene. J Inner Mongolia Agric Sci Tech, 2010, (1): 54–56 (in Chinese with English abstract)[12]刘鹏. 蓖麻细胞色素P450基因RNAi植物表达载体构建及遗传转化的研究. 沈阳农业大学博士学位论文, 2012Liu P. The Studies on Construction and Genetic Transformation of RNAi Plant Expression Rector Carrying Cytochrome P450 from Castor. PhD Dissertation of Shenyang Agricultural University, 2012 (in Chinese with English abstract)[13]严兴初. 蓖麻种质资源描述规范和数据标准. 北京: 中国农业出版社. 2005. pp 12–19Yan X C. Descriptions and data standard for castor (Ricinus communis L.). Beijing: China Agriculture Press, 2005. pp 12–19 (in Chinese)[14]Lander E S, Green P. Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174–181[15]Yang J, Hu C C, Hu H, Yu R D, Xia Z, Ye X Z, Zhu J. QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics, 2008, 24: 721–723[16]赵彦宏, 朱军, 徐海明, 杨剑, 高用明, 宋佑胜, 石春海, 邢永忠. 基于QTL定位的水稻有效穗数杂种优势预测. 中国水稻科学, 2007, 21: 350–354Zhao Y H, Zhu J, Xu H M, Yang J, Gao Y M, Song Y S, Shi C H, Xing Y Z. Predicting heterosis of effective panicle number per plant based on QTL mapping in rice. Chin J Rice Sci, 2007, 21: 350–354 (in Chinese with English abstract)[17]高用明, 朱军, 宋佑胜, 何慈信, 石春海, 邢永忠. 水稻永久F2群体抽穗期QTL的上位性及其与环境互作效应的分析. 作物学报, 2004, 30: 849–854Gao Y M, Zhu J, Song Y S, He C X, Shi C H, Xing Y Z. Use of Permanent F2 population to analyze epistasis and their Interaction effects with environments for QTLs controlling heading date in rice. Acta Agron Sin, 2004, 30: 849–854 (in Chinese with English abstract)[18]张志勇, 黄育民, 张凯, 王侯聪, 江良荣. 水稻株高QTL定位及精确性分析. 厦门大学学报(自然科学版), 2008, 47(1): 116–121Zhang Z Y, Huang Y M, Zhang K, Wang H C, Jiang L R. Detection of QTL for plant height in rice (Oryza sativa L.) and analysis of QTL mapping accuracy. J Xiamen Univ (Nat Sci), 2008, 47(1): 116–121 (in Chinese with English abstract)[19]王岩, 李卓坤, 田纪春. 利用永久 F2 群体定位小麦株高的QTL. 作物学报, 2009, 35: 1038−1043Wang Y, Li Z K, Tian J C. Detection of quantitative trait loci for plant height using an immortalized F2 population in wheat. Acta Agron Sin, 2009, 35: 1038−1043 (in Chinese with English abstract)[20]郑德波, 杨小红, 李建生, 严建兵, 张士龙, 贺正华, 黄益勤. 基于SNP标记的玉米株高及穗位高QTL定位.作物学报, 2013, 39: 549–556Zheng D B, Yang X H, Li J S, Yan J B, Zhang S L, He Z H, Huang Y Q. QTL identification for plant height and ear height based on SNP mapping in maize (Zea mays L.). Acta Agron Sin, 2013, 39: 549–556 (in Chinese with English abstract)[21]苗晗, 顾兴芳, 张圣平, 张忠华, 黄三文, 王烨. 利用永久群体在不同环境下定位黄瓜株高QTL. 中国农业科学, 2012, 45: 4552–4560Miao H, Gu X F, Zhang S P, Zhang Z H, Huang S W, Wang Y. Detection of QTL for plant height in different environments using an RIL populution in cucumber. Sci Agric Sin, 2012, 45: 4552–4560 (in Chinese with English abstract)[22]张维峰, 赵守贤. 国外蓖麻育种与遗传研究动态. 中国油料作物作物学报, 1988, (1): 90–92Zhang W F, Zhao S X. Foreign breeding and genetic research trends of castor. Chin J Oil Crop Sci, 1988, (1): 90–92 (in Chinese)[23]姚远, 李凤山, 陈永胜, 李金琴, 黄风兰, 王永佳. 国内外蓖麻研究动态. 内蒙古民族大学学报, 2009, 24(2): 172–174Yao Y, Li F S, Chen Y S, Li J Q, Huang F L, Wang Y J. Research progress on castor. J Inner Mongolia Univ Nat, 2009, 24(2): 172–174 (in Chinese with English abstract)[24]Groos C, Robert N, Bervas E, Charmet G. Genetic analysis of grain protein–content, grain yield and thousand–kernel weight in bread wheat. Theor Appl Genet, 2003, 106: 1032–1040[25]张坤普, 徐宪斌, 田纪春. 小麦籽粒产量及穗部相关性状的QTL定位. 作物学报, 2009, 35: 270–278Zhang K P, Xu X B, Tian J C. QTL mapping for grain yield and spike related traits in common wheat. Acta Agron Sin, 2009, 35: 270–278 (in Chinese with English abstract)[26]李文福, 刘宾, 彭涛, 袁倩倩, 韩淑晓, 田纪春. 利用DH和IF2两个群体进行小麦粒重、粒型和硬度的QTL分析. 中国农业科学, 2012, 45: 3453–3462Li W F, Liu B, Pneg T, Yuan Q Q, Han S X, Tian J C. Detection of QTL for kernel weight, grain size, and grain hardness in wheat using DH and Immortalized F2 population. Sci Agric Sin, 2012, 45: 3453–3462 (in Chinese with English abstract)[27]覃鸿妮, 晏萌, 王召辉, 郭莹, 王辉, 孙海燕, 刘志斋, 蔡一林. 玉米籽粒中花色苷和黑色素含量的QTL分析. 作物学报, 2012, 38: 275–284Qin H N, Yan M, Wang Z H, Guo Y, Wang H, Sun H Y, Liu Z Z, Cai Y L. QTL mapping for anthocyanin and melanin contents in maize kernel. Acta Agron Sin, 2012, 38: 275–284 (in Chinese with English abstract)[28]范冬梅, 杨振, 马占洲, 曾庆力, 杜翔宇, 蒋洪蔚, 刘春燕, 韩冬伟, 栾怀海, 裴宇峰, 陈庆山, 胡国华. 多环境条件下大豆倒伏性相关形态性状的QTL分析. 中国农业科学, 2012, 45: 3029–3039Fan D M, Yang Z, Ma Z Z, Zeng Q L, Du X Y, Jiang H W, Liu C Y, Han D W, Luan H H, Pei Y F, Chen Q S, Hu G H. QTL analysis of lodging-resistance related traits in soybean in different environments. Sci Agric Sin, 2012, 45: 3029–3039 (in Chinese with English abstract) |
[1] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[2] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
[3] | 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480. |
[4] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
[5] | 吕冬梅, 朱广龙, 王玥, 施雨, 卢发光, 任桢, 刘昱茜, 顾立峰, 卢海潼, Irshad Ahmad, 焦秀荣, 孟天瑶, 周桂生. 苗期重金属胁迫下蓖麻生长、生理和重金属积累效应[J]. 作物学报, 2021, 47(4): 728-737. |
[6] | 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461. |
[7] | 郭学民,赵晓曼,徐珂,王芯蕊,张辰瑜,东方阳. 蓖麻种子结构的解剖和显微观察[J]. 作物学报, 2020, 46(6): 914-923. |
[8] | 刘代铃,谢俊锋,何乾瑞,陈四维,胡跃,周佳,佘跃辉,刘卫国,杨文钰,武晓玲. 净作和套作下大豆贮藏蛋白11S、7S组分相对含量的QTL分析[J]. 作物学报, 2020, 46(3): 341-353. |
[9] | 吴海涛, 张勇, 苏伯鸿, Lamlom F Sobhi, 邱丽娟. 大豆分枝数相关分子标记开发及qBN-18位点精细定位[J]. 作物学报, 2020, 46(11): 1667-1677. |
[10] | 王存虎,刘东,许锐能,杨永庆,廖红. 大豆叶柄角的QTL定位分析[J]. 作物学报, 2020, 46(01): 9-19. |
[11] | 杨晓梦, 李霞, 普晓英, 杜娟, Muhammad Kazim Ali, 杨加珍, 曾亚文, 杨涛. 大麦重组自交系群体籽粒总花色苷含量和千粒重QTL定位[J]. 作物学报, 2020, 46(01): 52-61. |
[12] | 王大川,汪会,马福盈,杜婕,张佳宇,徐光益,何光华,李云峰,凌英华,赵芳明. 增加穗粒数的水稻染色体代换系Z747鉴定及相关性状QTL定位[J]. 作物学报, 2020, 46(01): 140-146. |
[13] | 崔月,陆建农,施玉珍,殷学贵,张启好. 蓖麻株高性状主基因+多基因遗传分析[J]. 作物学报, 2019, 45(7): 1111-1118. |
[14] | 魏丽娟,刘瑞影,张莉,陈志友,杨鸿,霍强,李加纳. 甘蓝型油菜茎高QTL定位及株高相关位点整合[J]. 作物学报, 2019, 45(6): 818-828. |
[15] | 闫超,郑剑,段文静,南文斌,秦小健,张汉马,梁永书. 越冬栽培稻产量性状相关QTL定位[J]. 作物学报, 2019, 45(4): 522-537. |
|