欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (08): 1380-1385.doi: 10.3724/SP.J.1006.2014.01380

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

豫粳6号B与TR2604间杂种花粉不育基因的定位

张宏根**,孙一标**,封智蔷,钱凯,裴艳,李闯,汤述翥*,梁国华,顾铭洪   

  1. 扬州大学农学院 / 江苏省作物遗传生理重点实验室 / 教育部植物功能基因组学重点实验室,江苏扬州225009
  • 收稿日期:2013-12-27 修回日期:2014-04-16 出版日期:2014-08-12 网络出版日期:2014-05-16
  • 通讯作者: 汤述翥, E-mail: sztang@yzu.edu.cn **同等贡献(Contributed equally to this work)
  • 基金资助:

    本研究由国家自然科学基金项目(31071384, 31000533)和江苏高校优势学科建设工程项目资助

Mapping of a Gene Causing Hybrid Pollen Sterility between Yujing 6B and TR2604

ZHANG Hong-Gen**,SUN Yi-Biao**,FENG Zhi-Qiang,QIAN Kai,PEI Yan,LI Chuang,TANG Shu-Zhu*,LIANG Guo-Hua,GU Ming-Hong   

  1. Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou 225009, China
  • Received:2013-12-27 Revised:2014-04-16 Published:2014-08-12 Published online:2014-05-16
  • Contact: 汤述翥, E-mail: sztang@yzu.edu.cn **同等贡献(Contributed equally to this work)

摘要:

阐明BT型杂交粳稻组合间育性差异的遗传基础有助于三系法杂交粳稻组合的选育。根据TR2604与豫粳6号A(B)、9201A(B)后代的花粉育性及小穗育性,明确了豫粳6号A(B)/TR2604 F1不育由双亲间特异性不亲和造成。遗传分析表明豫粳6号A(B)与TR2604 F1花粉不育受单基因S38(t)控制。以352株豫粳6号A/TR2604//TR2604、豫粳6号B/TR2604//豫粳6号B等群体中单株为定位群体,将S38(t)定位于第7染色体上标记RM18和RM234之间,与两标记遗传距离分别为0.43 cM和0.14 cM,两标记间物理距离为180 kb,相关结果为S38(t)图位克隆工作奠定了基础。

关键词: 三系杂交粳稻, 杂种花粉不育, 遗传分析, 基因定位

Abstract:

Understanding the genetic basis of spikelet fertility differences between japonica hybrids is good for BT-type three-line japonica hybrid breeding. According to the pollen and spikelet fertility of the plants in the populations derived from Yujing 6A(B), 9201A(B) and TR2604, it was confirmed that the sterility of Yujing 6A(B)/TR2604 F1 plants was induced by the incompatibility between the parents. Genetic analysis suggested that the hybrid pollen sterility character was controlled by a single nuclear gene named S38(t). A total of 352 plants from Yujing 6A//TR2604/TR2604 and Yujing 6B/TR2604//Yujing 6B segregation populations were used for gene mapping, and S38(t) wasmapped between RM18 and RM234 on chromosome 7 with genetic distances of 0.43 cM and 0.14 cM, respectively. The physical distance between RM18 and RM234 was about 118 kb. These results are useful for the map-based cloning of S38(t) gene.

Key words: Three-line japonica hybrid, Hybrid pollen sterility, Genetic analysis, Gene mapping

[1]曾千春, 周开达, 朱桢, 罗琼. 中国水稻杂种优势利用现状. 中国水稻科学, 2000, 14: 243–246



Zeng Q C, Zhou K D, Zhu Z, Luo Q. Current status in the use of hybrid rice heterosis in China. Chin J Rice Sci , 2000, 14: 243–246 (in Chinese with English abstract)



[2]杨振玉, 陈秋柏, 陈荣芳, 苏正基, 贾宝清, 佟景兴, 王健群. 水稻粳型恢复系C57的选育. 作物学报, 1981, 7: 153–156



Yang Z Y, Chen Q B, Chen R F, Su Z J, Jia B Q, Tong J X, Wang J Q. The breeding of japonica rice restorer C57. Acta Agron Sin, 1981, 7: 153–156 (in Chinese with English abstract)



[3]杨振玉, 张宗旭, 魏耀林, 赵迎春, 高勇. 粳型特异亲和恢复系C418的选育及其特性. 杂交水稻, 1998, 13(3): 31–32



Yang Z Y, Zhang Z X, Wei Y L, Zhao Y C, Gao Y. Breeding and characteristics of japonica type wide compatibilitv line C418. Hybrid Rice, 1998, 13(3): 31–32 (in Chinese)



[4]张宏根, 孔宪旺, 朱正斌, 汤述翥, 裔传灯, 顾铭洪. 粳稻三系亲本的性状特征与杂种优势分析. 作物学报, 2010, 36: 801–809



Zhang H G, Kong X W, Zhu Z B, Tang S Z, Yi C D, Gu M H. Analysis of characteristics and heterosis of three-line parents in hybrid japonica rice. Acta Agron Sin, 2010, 36: 801–809 (in Chinese with English abstract)



[5]Rogers S O, Bendich A J. Extraction of DNA from plant tissue. Plant Mol Biol Manual, 1988, A6: 1–10



[6]Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174–181



[7]Kosambi D D. The estimation of map distances from recombination values. Ann Eugene, 1944, 12: 172–175



[8]Komori T, Ohta S. Map-based cloning of a fertility restorer gene, Rf-1, in rice (Oryza sativa L.). Plant J, 2004, 37: 315–325



[9]Wang Z H, Zou Y J, Li XY, Zhang Q Y, Chen L T, Wu H, Su D H, Chen Y L, Guo J X, Luo D, Long Y M, Zhong Y, Liu Y G. Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell, 2006, 18: 676–687



[10]张宏根, 朱正斌, 李波, 刘超, 汤述翥, 梁国华, 顾铭洪. 粳稻野败型细胞质雄性不育恢复系SWR78的恢复基因定位. 中国水稻科学, 2009, 23: 377–382



Zhang H G, Zhu Z B, Li B, Liu C, Tang S Z, Liang G H, Gu M H. Mapping of fertility restoring gene for wild abortive type cytoplasmic male sterility in a japonica rice restorer line SWR78. Chin J Rice Sci, 2009, 23: 377–382 (in Chinese with English abstract)



[11]汪勇. 水稻杂种花粉不育的细胞学研究及两个杂种花粉不育基因的精细定位. 南京农业大学博士学位论文, 2011



Wang Y. Cytological Studies of Hybrid Pollen Sterility and Fine Mapping of Genes Causing Hybrid Pollen Sterility in Rice (Oryza sativa L.). Ph.D. Dissertation of Nanjing Agricultural University, Nanjing, China, 2011 (in Chinese with English abstract)



[12]Kubo T. Genetic mechanisms of postzygotic reproductive isolation: an epistatic network in rice. Breed Sci, 2013, 63: 359–366



[13]张桂权, 卢永根. 栽培稻(Oryza sativa)杂种不育性的遗传研究: I. 等基因F1不育系杂种不育性的双列分析. 中国水稻科学, 1989, 3: 97–101



Zhang G Q, Lu Y G. Genetic studies on the hybrid sterility in cultivated rice(Oryza sativa): I. Diallel analysis of the hybrid sterility among isogenic F1 sterile lines. Chin J Rice Sci, 1989, 3: 97–101 (in Chinese with English abstract)



[14]张桂权, 卢永根. 栽培稻杂种不育性的遗传研究: II. F1花粉不育性的基因模式. 遗传学报, 1993, 20: 222–228



Zhang G Q, Lu Y G. Genetic studies on the hybrid sterility in cultivated rice(Oryza sativa): II. A genic model for F1 pollen sterility. J Genet Genomics, 1993, 20: 222–228 (in Chinese with English abstract)



[15]张桂权,卢永根,张华,杨进昌,刘桂富. 栽培稻(Oryza sativa)杂种不育性的遗传研究: IV. F1花粉不育性的基因型遗传. 遗传学报, 1994, 21: 34–41



Zhang G Q, Lu Y G, Zhang H, Yang J C, Liu G F. Genetic studies on the hybrid sterility in cultivated rice (Oryza sativa): IV. Genotypes for F1 pollen sterility. J Genet Genomics (遗传学报), 1994, 21: 34–41 (in Chinese with English abstract)



[16]Long Y M, Zhao L F, Niu B X, Su J, Wu H, Chen Y L, Zhang Q Y, Guo J X, Zhuang C X, Mei M T. Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes. Proc Natl Acad Sci USA, 2008, 105: 18871–18876



[17]Win K T, Yamagata Y, Miyazaki Y, Doi K, Yasui H, Yoshimura A. Independent evolution of a new allele of F1 pollen sterility gene S27 encoding mitochondrial ribosomal protein L27 in Oryza nivara. Theor Appl Genet, 2011, 122: 385–394



[18]Yamagata Y, Yamamoto E, Aya K, Win K T, Doi K, Ito T, Kanamori H, Wu J Z, Matsumoto T, Matsuoka M. Mitochondrial gene in the nuclear genome induces reproductive barrier in rice. Proc Natl Acad Sci USA, 2010, 107: 1494–1499



[19]Mizuta Y, Harushima Y, Kurata N. Rice pollen hybrid incompatibility caused by reciprocal gene loss of duplicated genes. Proc Natl Acad Sci USA, 2010, 107: 20417–20422



[20]Doi K, Taguchi K, Yoshimura A. RFLP mapping of S20 and S21 for F1 pollen semi-sterility found in backcross progeny of Oryza sativa and O. glaberrima. Rice Genet Newsl, 1999, 16: 65–68



[21]Miyazaki Y, Doi K, Yasui H, Yoshimura A. Identification of a new allele of F1 pollen sterility gene, S21, detected from the hybrid between Oryza sativa and O. rufipogon. Rice Genet Newsl, 2007, 23: 36–38



[22]Lin S Y, Ikehashi H. A gamete abortion locus detected by segregation distortion of isozyme locus Est-9 in wide crosses of rice (Oryza sativa L.). Euphytica, 1993, 67: 35–40



[23]Sobrizal, Matsuzaki Y, Sanchez P L, Ikeda K, Yoshimura A. Mapping of F1 pollen semi-sterility gene found in backcross progeny of Oryza sativa L. and Oryza glumaepatula Steud. Rice Genet Newsl, 2000, 17: 61–63

[1] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[2] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[3] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[4] 江建华, 张武汉, 党小景, 荣慧, 叶琴, 胡长敏, 张瑛, 何强, 王德正. 水稻核不育系柱头性状的主基因+多基因遗传分析[J]. 作物学报, 2021, 47(7): 1215-1227.
[5] 吴然然, 林云, 陈景斌, 薛晨晨, 袁星星, 闫强, 高营, 李灵慧, 张勤雪, 陈新. 绿豆雄性不育突变体msm2015-1的遗传学与细胞学分析[J]. 作物学报, 2021, 47(5): 860-868.
[6] 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293.
[7] 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172.
[8] 黄妍, 贺焕焕, 谢之耀, 李丹莹, 赵超越, 吴鑫, 黄福灯, 程方民, 潘刚. 水稻矮化宽叶突变体osdwl1的生理特性和基因定位[J]. 作物学报, 2021, 47(1): 50-60.
[9] 姜鸿瑞, 叶亚峰, 何丹, 任艳, 杨阳, 谢建, 程维民, 陶亮之, 周利斌, 吴跃进, 刘斌美. 一个新的水稻脆秆突变体bc17的鉴定及基因定位[J]. 作物学报, 2021, 47(1): 71-79.
[10] 石慧敏, 蒋成功, 王红武, 马庆, 李坤, 刘志芳, 吴宇锦, 李树强, 胡小娇, 黄长玲. 玉米籽粒突变体dek48的表型鉴定与基因定位[J]. 作物学报, 2020, 46(9): 1359-1367.
[11] 张雪翠,钟超,段灿星,孙素丽,朱振东. 大豆品种郑97196抗疫霉病基因RpsZheng精细定位[J]. 作物学报, 2020, 46(7): 997-1005.
[12] 田士可, 秦心儿, 张文亮, 董雪, 代明球, 岳兵. 玉米雄性不育突变体mi-ms-3的遗传分析及分子鉴定[J]. 作物学报, 2020, 46(12): 1991-1996.
[13] 谢园华,李凤菲,马晓慧,谭佳,夏赛赛,桑贤春,杨正林,凌英华. 水稻半外卷叶突变体sol1的表型分析与基因定位[J]. 作物学报, 2020, 46(02): 204-213.
[14] 霍强,杨鸿,陈志友,荐红举,曲存民,卢坤,李加纳. 基于QTL定位和全基因组关联分析筛选甘蓝型油菜株高和一次有效分枝高度的候选基因[J]. 作物学报, 2020, 46(02): 214-227.
[15] 莫祎,孙志忠,丁佳,余东,孙学武,盛夏冰,谭炎宁,袁贵龙,袁定阳,段美娟. 水稻白条纹叶突变体wsl1的遗传分析及基因精细定位[J]. 作物学报, 2019, 45(7): 1050-1058.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!