欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (08): 1493-1500.doi: 10.3724/SP.J.1006.2014.01493

• 研究简报 • 上一篇    下一篇

甘蓝型油菜角果长度的主+多基因混合遗传模型

周清元,崔翠,阴涛,陈东亮,张正圣,李加纳   

  1. 西南大学农学与生物科技学院 / 南方山地农业教育部工程研究中心 / 西南大学重庆市油菜工程技术研究中心, 重庆北碚, 400715
  • 收稿日期:2013-10-30 修回日期:2014-04-17 出版日期:2014-08-12 网络出版日期:2014-05-16
  • 通讯作者: 李加纳, E-mail: ljn1950@swu.edu.cn, Tel: 023-68251950
  • 基金资助:

    本研究由高等学科创新引智计划(B12006)项目,国家重点基础研究发展计划(948计划)项目(2011-G23),国家农业现代产业技术体系建设专项资金(CARS-13),重庆市自然科学基金(CSTC2011jjA80005)和西南大学博士启动基金(SWU113064)资助。

Genetic Analysis of Silique Length Using Mixture Model of Major Gene Plus Polygene in Brassica napus L.

ZHOU Qing-Yuan,CUI Cui,YIN Tao,CHEN Dong-Liang,ZHANG Zheng-Sheng,LI Jia-Na   

  1. College of Agronomy and Biotechnology, Southwest University / Engineering Research Center of South Upland Agriculture, Ministry of Education / Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China?
  • Received:2013-10-30 Revised:2014-04-17 Published:2014-08-12 Published online:2014-05-16
  • Contact: 李加纳, E-mail: ljn1950@swu.edu.cn, Tel: 023-68251950

摘要:

 

角果是油菜产量构成要素中重要的组成部分。本文以长角果品种中双11和短角果材料10D130为亲本配制杂交组合,采用主基因+多基因混合遗传模型分析方法对该组合6世代遗传群体(P1、P2、F1、BCP1、BCP2和F2)的果身长、角果长和果喙长进行遗传分析。结果表明,该组合的3个角果性状均呈连续分布,其中,果身长最适遗传模型为E-0 (2对加性-显性-上位性主基因+加性-显性-上位性多基因模型),2对主基因加性效应值分别是1.75和–0.06,显性效应值分别是–0.59和–0.86,主基因遗传率在BCP1、BCP2和F2中分别是51.10%、74.23%和66.93%,多基因遗传率分别为29.16%、17.11%和23.96%。角果长的最适遗传模型为E-1 (2对加性-显性-上位性主基因+加性-显性多基因模型),其中,第1对主基因加性效应为0.34,显性效应为–0.81,第2对主基因加性效应为0.34,显性效应为–0.47,主基因遗传率在BCP1、BCP2和F2中分别是47.63%、68.51%和79.45%,多基因遗传率分别为29.40%、20.89%和12.47%。果喙长的最适遗传模型为E-3模型(2对加性主基因+加-显多基因遗传模型),2对主基因加性效应值分别是0.2和–0.2,主基因遗传率在BCP1、BCP2和F2中分别是33.71%、72.75%和52.25%,多基因遗传率分别为40.08%、5.37%和27.60%。

关键词: 甘蓝型油菜, 角果长, 混合遗传模型, 遗传分析

Abstract:

Silique is one of major components for rapeseed yield. Inheritance of silique body length (SBL), valid silique length (VSL) and beak length (BL) in a cross of variety Zhongshuang 11 with long silique (P1) and line 10D130 with short silique (P2) was investigated by the mixed major gene plus polygene inheritance model. The results showed that SBL, VSL and BL in the populations of F2, BCP1, and BCP2 were controlled by the major gene and polygenes. The SBL were dominated by two major genes with additive-dominance-epistasis effects plus polygenes with additive-dominance-epistasis effects (E-0 model). The heritability values of the major genes of SBL in BCP1, BCP2, and F2 were estimated as 51.10%, 74.23%, and 66.93%, respectively, and the heritability values of the polygene were 29.16%, 17.11%, and 23.96%, respectively. The additive effects of two major genes of SBL were 1.75 and –0.06, and the dominant effects of two major genes were –0.59 and –0.86, respectively. The valid silique length was controlled by two major genes with additive-dominance-epistasis effects plus polygenes with additive-dominance effects (E-1 model). Heritability values of the major genes for SL in BCP1, BCP2, and F2 generations were estimated as 47.63%, 68.51%, and 79.45%, respectively, and the heritability values of the polygene were 29.40%, 20.89%, and 12.47%, respectively. The additive effects of two major genes were equal (0.34) to there of the cross, but the dominant effects of the two major genes were –0.81 and –0.47, respectively. The beak length was dominated by two major gene with additive effects plus polygenes with additive- dominance effects (E-3 model). Heritability values of the major genes of BL in the cross were 33.71%, 72.75%, and 52.25%, respectively, and the heritability values of the polygene were 40.08%, 5.37%, and 27.60%, respectively. The additive effects of two major genes were 0.20 and –0.20, respectively.

Key words: Brassica napus L., Sileque length, Mixed inheritance modal, Genetic Analysis

[1]Schiltz S, Munier-Jolain N, Jeudy C, Burstin J, Salon C. Dynamics of exogenous nitrogen partitioning and nitrogen remobilization from vegetative organs in pea revealed by 15N in vivo labeling throughout seed filling. Plant Physiol, 2005, 137: 1463–1473



[2]Yang P, Shu C, Chen L, Xu J, Wu J, Liu K . Identification of a major QTL for silique length and seed weight in oilseed rape (Brassica napus L.). Theor Appl Genet, 2012, 125: 285–296



[3]Rood S, Major D, Charnetski W. Seasonal changes in 14CO2 assimilation and 14 C translocation in oilseed rape. Field Crops Res, 1984, 8: 341–348



[4]冷锁虎, 朱耕如, 邓秀兰. 油菜籽粒干物质来源的研究. 作物学报, 1992, 18: 250–257



Leng S H, Zhu G R, Deng X L. Study on the sources of the dry matter in the seed of rapeseed. Acta Agron Sin, 1992, 18: 250–257 (in Chinese with English abstract)



[5]Bennett E J, Roberts J A, Wagstaff C. The role of the pod in seed development: strategies for manipulating yield. New Phytol, 2011, 190: 838–853



[6]丁秀琦. 白菜型春油菜角果和种子性状研究. 中国油料, 1996, 18(4): 28–30



Ding X Q. Study on characters of silique and seed in spring rape (B. campestris L.). Oil Crop China, 1996, 18(4): 28–30 (in Chinese with English abstract)



[7]Chay P, Thurling N. Identification of genes controlling pod length in spring rapeseed, Brassica napus L., and their utilization for yield improvement. Plant Breed, 1989, 103: 54–62



[8]Diepenbrock W. Yield analysis of winter oilseed rape (Brassica napus L.): a review. Field Crops Res, 2000, 67: 35–49



[9]沈熙. 甘蓝型油菜角果长度性状的遗传及QTL定位. 华中农业大学硕士学位论文, 2008



Shen X. Genetic Analysic and Gene Maping of Pod Length Trait in Brassica napus L. MS Thesis of Huazhong Agricultural University, Wuhan, China, 2008 (in Chinese with English abstract)



[10]危文亮. 甘蓝型油菜长角果变异体的遗传研究. 遗传, 2000, 22: 93–95



Wei W L. Studies of the inheritance of a long-pod mutant in Brassica napus L. Hereditas (Beijing), 2000, 22: 93–95 (in Chinese with English abstract)



[11]王艳惠, 牛应泽. 人工合成甘蓝型油菜特长角性状的遗传分析. 遗传, 2006, 28: 1273–1279



Wang Y H, Niu Y Z. Genetic analysis of a specially long pod character in artificially resythesized Brassica napus L. Hereditas (Beijing), 2006, 28: 1273–1279 (in Chinese with English abstract)



[12]王艳惠. 人工合成甘蓝型油菜特长角性状的遗传及分子生物学研究. 四川农业大学博士学位论文, 2009



Wang Y H. Genetic and Molecular Biology Research on the Especially-long Pod of Artificially Resynthesized Rapeseed (Brassica napus L.). PhD Dissertation of Sichuan Agricultural University, Ya’an, China, 2009 ((in Chinese with English abstract))



[13]盖钧镒, 章元明, 王健康. 植物数量性状遗传体系. 北京, 科学出版社, 2003



Gai J Y, Zhang Y M, Wang J K. Genetic system of quantitative traits in plants. Beijing. Science Press, 2003 (in Chinese)



[14]代君丽, 崔磊, 刘珂, 宗莹莹, 袁虹霞, 邢小萍, 李洪杰, 李洪连. 小麦品种太空6号对Heterodera avenae郑州群体的抗性遗传分析. 作物学报, 2013, 39: 642–648



Dai J L, Cui L, Liu K, Zong Y Y, Yuan H X, Xing X P, Li H J, Li H L. Genetic analysis of common wheat cultivar Taikong 6 for resistance to Heterodera avenae Zhengzhou population. Acta Agron Sin, 2013, 39: 642–648 (in Chinese with English abstract)



[15]李余生, 朱镇, 张亚东, 赵凌, 王才林. 水稻稻曲病抗性的主基因+多基因混合遗传模型分析. 作物学报, 2008, 34: 1728–1733



Li Y S, Zhu Z, Zhang Y D, Zhao L, Wang C L. Genetic analysis of rice false smut resistance using major gene plus polygene mixed genetic model. Acta Agron Sin, 2008, 34: 1728–1733 (in Chinese with English abstract)



[16]王建设, 王建康, 朱立宏, 盖钧镒. 水稻主基因-多基因混合遗传控制白叶枯病抗性的基因效应分析. 遗传, 2000, 27: 34–38



Wang J S, Wang J K, Zhu L H, Cai J Y. Major-polygene effect analysis of resistance to bacterial blight (Xanthomonas campestris pv. oryzae) in rice. Hereditas (Beijing), 2000, 27: 34–38 (in Chinese with English abstract)



[17]Zheng W J, Liu Z H, Zhao J M, Chen W F. Genetic analysis of stripe disease resistance in rice restorer line c224 using major gene plus polygene mixed effect model. Rice Sci, 2012, 19: 202–206



[18]刘莹, 盖钧镒, 吕慧能, 王永军, 陈受宜. 大豆耐旱种质鉴定和相关根系性状的遗传与QTL定位. 遗传学报, 2005, 32: 855–863



Liu Y, Gai J Y, Lu H N, Wang Y J, Chen S Y. Identification of drought tolerant germplasm and inheritance and QTL mapping of related root traits in soybean (Glycine max (L.) Merr.). Acta Genet Sin, 2005, 32: 855–863 (in Chinese with English abstract)



[19]Zhang X, Li C Q, Wang X Y, Chen G P, Zhang J B, Zhou R Y. Genetic analysis of cryotolerance in cotton during the overwintering period using mixed model of major gene and polygene. J Integr Agric, 2012, 11: 537–544



[20]Zhang X Y, Han SY, Tang F S, Xu J, Liu H, Yan M, Dong W Z, Huang B Y, Zhu S J. Genetic analysis of yield in peanut (Arachis hypogaea L.) using mixed model of major gene plus polygene. Afr J Biotechnol, 2011, 10: 7126–7130



[21]唐慧珣, 司龙亭. 黄瓜种子休眠性的数量遗传分析. 园艺学报, 2013, 40: 549–554



Tang H X, Si L T. Quantitative genetic analysis of seed dormancy in cucumber. Acta Hortic Sin, 2013, 40: 549–554 (in Chinese with English abstract)



[22]戚存扣, 盖钧镒, 章元明. 甘蓝型油菜芥酸含量的主基因+多基因遗传. 遗传学报, 2001, 28: 182–187



Qi C K, Gai J Y, Zhang Y M. Major gene plus poly-gene inheritance of erucic acid content in Brassica napus L. Acta Genet Sin, 2001, 28: 182–187 (in Chinese with English abstract)



[23]Zhang S F, Ma C Z, Zhu J C, Wang J P, Wen Y C, Fu T D. Genetic analysis of oil content in Brassica napus L. using mixed model of major gene and polygene. Acta Genet Sin, 2006, 33: 171–180



[24]张洁夫, 戚存扣, 浦惠明, 陈松, 陈锋, 高建芹, 陈新军, 顾慧, 傅寿仲. 甘蓝型油菜含油量的遗传与QTL定位. 作物学报, 2007, 33: 1495–1501



Zhang J F, Qi C K, Pu H M, Chen S, Chen F, Gao J Q, Chen X J, Gu H, Fu S Z. Inheritance and QTL identification of oil content in rapeseed (Brassica napus L.). Acta Agron Sin, 2007, 33: 1495–1501 (in Chinese with English abstract)



[25]顾慧, 戚存扣. 甘蓝型油菜(Brassica napus L.)抗倒伏性状的主基因+多基因遗传分析. 作物学报, 2008, 34: 376–381



Gu H, Qi C K. Genetic analysis of lodging resistance with mixed model of major gene plus polygene in Brassica napus L. Acta Agron Sin, 2008, 34: 376–381 (in Chinese with English abstract)



[26]周清元, 李军庆, 崔翠, 卜海东, 阴涛, 颜银华, 李加纳, 张正圣. 油菜半矮杆新品系10D130株型性状的遗传分析. 作物学报, 2013, 39: 207–215



Zhou Q Y, Li J Q, Cui C, Bu H D, Yin T, Yan Y H, Li J N, Zhang Z S. Genetic analysis of plant type in semi-dwarf new line (10D130) of rapeseed. Acta Agron Sin, 2013, 39: 1–19 (in Chinese with English abstract)



[27]戚存扣, 盖钧镒, 傅寿仲, 浦惠明, 张洁夫, 陈新军, 高建琴. 甘蓝型油菜(Brassica napus L.)千粒重性状遗传体系分析.作物学报, 2004, 30: 1274–1277



Qi C K, Gai J Y, Fu S Z, Pu H M, Zhang J F, Chen X J, Gao J Q. Analysis of genetic system of 1000 seed weight in Brassica napus L. Acta Agron Sin, 2004, 30: 1274–1277 (in Chinese with English abstract)



[28]Zhang L W, Liu P W, Hong D F, Huang A Q, Li S P, He Q B, Yang G S. Inheritance of seeds per silique in Brassica napus L. using joint segregation analysis. Field Crops Res, 2010, 116: 58–67



[29]田露申, 牛应泽, 余青青, 郭世星, 柳丽. 甘蓝型油菜白花性状的主基因+多基因遗传分析. 中国农业科学, 2009, 42: 3987–3995



Tian L S, Niu Y Z, Yu Q Q, Guo S X, Liu L. Genetic analysis of white flower color with mixed model of major gene plus polygene in Brassica napus L. Sci Agric Sin, 2009, 42: 3987–3995 (in Chinese with English abstract)



[30]周清元. 甘蓝型油菜新种质资源创建及其株型性状遗传分析. 西南大学博士学位论文, 2009



Zhou Q Y. Study on Germplasm Creation of Brassica napus L. and Genetic Analysis of Plant-type Characters. PhD Dissertation of Southwest University, Chongqing, China, 2009 (in Chinese with English abstract)



[31]Zhang Y M, Gai J Y, Yang Y H. The EIM algorithm in the joint segregation analysis of quantitative traits. Genet Res, 2003, 81: 157–163



[32]Akaike H. On entropy maximum principles. In: Krishnaiag G, ed. Applications of Statistics. Amsterdam, Netherlands: North-Holland Publishing, 1977. pp 27–41



[33]王春娥, 盖钧镒, 傅三雄, 喻德跃, 陈受宜. 大豆豆腐和豆乳得率的遗传分析与QTL定位. 中国农业科学, 2008, 41: 1274–1282



Wang C E, Gai J Y, Fu S X, Yu D Y, Chen S Y. Inheritance and QTL mapping of tofu and soymilk output in soybean. Sci Agric Sin, 2008, 41: 1274–1282 (in Chinese with English abstract)

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[4] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[5] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[6] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[7] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[8] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[9] 江建华, 张武汉, 党小景, 荣慧, 叶琴, 胡长敏, 张瑛, 何强, 王德正. 水稻核不育系柱头性状的主基因+多基因遗传分析[J]. 作物学报, 2021, 47(7): 1215-1227.
[10] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[11] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[12] 吴然然, 林云, 陈景斌, 薛晨晨, 袁星星, 闫强, 高营, 李灵慧, 张勤雪, 陈新. 绿豆雄性不育突变体msm2015-1的遗传学与细胞学分析[J]. 作物学报, 2021, 47(5): 860-868.
[13] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[14] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[15] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!