欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (01): 22-30.doi: 10.3724/SP.J.1006.2015.00022

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

Glu-1位点缺失对小麦麦谷蛋白聚合体粒度分布及面团特性的影响

张平平1,*,马鸿翔1,姚金保1,Joseph M. AWIKA   

  1. 1江苏省农业科学院/江苏省农业生物学重点实验室, 江苏南京 210014; 2Cereal Quality Laboratory, Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
  • 收稿日期:2014-03-24 修回日期:2014-09-30 出版日期:2015-01-12 网络出版日期:2014-11-11
  • 通讯作者: 张平平, E-mail: pp_zh@126.com, Tel: 025-84390257
  • 基金资助:

    本研究由国家自然科学基金项目(31101146), 江苏省自然科学基金项目(BK2011667), 江苏省农业自主创新资金项目[CX(12)5023]和国家现代农业产业技术体系建设专项(CARS-03)资助。

Effects of Glu-1 Deletion on Size Distribution of Glutenin Polymeric Protein and Dough Properties in Common Wheat

ZHANG Ping-Ping,MA Hong-Xiang,YAO Jin-Bao,Joseph M. AWIKA   

  1. 1 Provincial Key Laboratory for Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; 2Cereal Quality Laboratory, Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
  • Received:2014-03-24 Revised:2014-09-30 Published:2015-01-12 Published online:2014-11-11
  • Contact: 张平平, E-mail: pp_zh@126.com, Tel: 025-84390257

摘要:

Glu-1位点正常和部分缺失的小麦品系为材料,探讨HMW-GS和LMW-GS组成与谷蛋白聚合体粒度分布和面团特性的关系,为利用HMW-GS缺失系改良小麦品质提供理论依据。在20个供试硬白冬麦品系中,1个品系为Glu-A1位点缺失,5个品系为Glu-D1缺失,3个品系为Glu-A1Glu-D1双缺失。所有品系的蛋白质含量皆较高(13.39%~14.12%),品系间无显著差异,缺失系与非缺失系间也无显著差异。Glu-1位点缺失显著降低了高分子量谷蛋白/低分子量谷蛋白比(HMW/LMW)、不溶性谷蛋白大聚体的含量和百分比。谷蛋白/醇溶蛋白比(GLU/GLI)在基因型间变幅较小,且在缺失系和非缺失系间无显著差异。Glu-1位点缺失显著降低了面团弹性,但显著提高了面团的延展性。部分Glu-1位点缺失系仍具有较高的面团强度和突出的延展性,谷蛋白聚合体粒度分布和面团特性受谷蛋白亚基组成和表达量的共同影响。研究结果表明,利用Glu-1位点亚基缺失可能是改善面筋延展性,提高食品加工品质的方法之一。

关键词: Glu-1位点, 缺失, 麦谷蛋白聚合体, 面团特性

Abstract:

The relationship between the HMW-GS and LMW-GS components and the size distribution of glutenin polymeric protein and dough properties were studied using Glu-1 normal and deletion lines, which provides a foundation for investigating the potential of Glu-1 deletion line in quality improvement of winter wheat. In the 20 hard white winter wheat lines tested, one was Glu-A1 deletion line, five were Glu-D1 deletion lines, and three were Glu-A1 and Glu-D1 double-deletion lines. Flour protein contents of the lines tested ranged from 13.39% to 14.12% with no significant difference between each other and between deletion and non-deletion groups. In Glu-1 deletion lines, the high molecular weight glutenin subunits/low molecular weight glutenin subunits ratio (HMW/LMW), content of SDS unextractable polymeric protein (UPP), and percentage of UPP (%UPP) were significantly lower than those in non-deletion lines. However, the glutenin/gliadin ratio (GLU/GLI) was similar in all genotypes, with no significant difference between deletion and non-deletion groups. Deletion at Glu-1 resulted in a significant decrease of dough elasticity and a significant increase of dough extensibility. Several Glu-1 deletion lines were characterized with medium gluten strength and excellent extensibility, suggesting that the size distribution of glutenin polymeric protein and dough properties were affected by both allelic composition and quantity of glutenin subunits. These results indicate that Glu-1 deletion lines can be used to improve dough extensibility and processing quality of common wheat.

Key words: Glu-1 locus, Deletion, Glutenin polymeric protein, Dough properties

[1]Payne P I, Nightingale M A, Krattiger A F, Holt L M. The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J Sci Food Agric, 1987, 40: 51–65

[2]赵和, 卢少源, 李宗智. 小麦高分子量麦谷蛋白遗传变异及其与品质和其它农艺性状关系的研究. 作物学报, 1994, 20: 67–75

Zhao H, Lu S Y, Li Z Z. Studies on inheritance and variation of HMW glutenin subunits and their correlation with quality and other agronomic characters in wheat. Acta Agron Sin, 1994, 20: 67–75

[3]宋建民, 吴祥云, 刘建军, 刘爱峰, 赵振东, 刘广田. 小麦品质的谷蛋白亚基评定标准研究. 作物学报, 2003, 29: 829–834

Song J M, Wu X Y, Liu J J, Liu A F, Zhao Z D, Liu G T. Study on quality scoring system assessed by wheat high-molecular-weight glutenin subunits. Acta Agron Sin, 2003, 29: 829–834 (in Chinese with English abstract)

[4]庞斌双, 张学勇, 王兰芬, 郝晨阳, 董玉琛. 小麦Glu-B1位点1Bx14+1By18新亚基对材料的创制及其对加工质量的影响分析. 作物学报, 2007, 33:1582–1586

Pang B S, Zang X Y, Wang L F, Hao C Y, Dong Y C. A novel line with HMW-GS 1Bx14+1By18 with positive effect on processing quality. Acta Agron Sin, 2007, 33: 1582–1586 (in Chinese with English abstract)

[5]张莉丽, 张延滨, 宋庆杰, 赵海滨, 于海洋, 张春利, 辛文利, 肖志敏. 龙辐麦3号小麦品种HMW-GS NULL和1近等基因系间品质差异的研究. 中国农业科学, 2007, 40: 1864–1870

Zhang L L, Zhang Y B, Song Q J, Zhao H B, Yu H Y, Zhang C L, Xin W L, Xiao Z M. Study on the quality of NILs of wheat cultivar Longfumai 3 with HMW-GS null and 1 subunits. Sci Agric Sin, 2007, 40: 1864–1870 (in Chinese with English abstract)

[6]León E, Aouni R, Piston F, Rodríguez-Quijano M, Shewry P R, Martín A, Barro F. Stacking HMW-GS transgenes in bread wheat: Combining subunit 1Dy10 gives improved mixing properties and dough functionality. J Cereal Sci, 2010, 51: 13–20

[7]Gianibelli M C, Larroque O R, MacRitchie F. Biochemical, genetic, molecular characterization of wheat glutenin and its component subunits. Cereal Chem, 2001, 78: 635–646

[8]Rasheed A, Xia X C, Yan Y M, Appels R, Mahmoodb T. He Z H. Wheat seed storage proteins: Advances in molecular genetics, diversity and breeding applications. J Cereal Sci, 2014, 60: 11–24.

[9]Lindsay M P, Skerritt J H. The glutenin macropolymer of wheat flour dough: structure-function perspectives. Trends Foods Sci Tech, 1999, 10: 247–253

[10]Ciaffi M, Tozzi L, Lafiandra D. Relationship between flour composition determined by size-exclusion high-performance liquid chromatography and dough rheological parameters. Cereal Chem, 1996, 73: 346–351

[11]Gupta R B, Khan K, MacRitchie F. Biochemical basis of flour properties in bread wheats. I. Effects of variation in the quantity and size distribution of polymeric protein. J Cereal Sci, 1993, 18: 23-41

[12]赵会贤, 胡胜武, 吉万全, Daryl M. 麦谷蛋白Glu-1和Glu-3位点基因等位变异对籽粒聚合体蛋白粒度分布的影响. 中国农业科学, 1998, 31(1): 69–75

Zhao H X, Hu S W, Ji W Q, Daryl M. The effects of allelic variation at glutenin subunit loci Glu-1 and Glu-3 on the size distribution of polymeric protein. Sci Agric Sin, 1998, 31(1): 69–75 (in Chinese with English abstract)

[13]刘丽, 周阳, 何中虎, Peña R J, 张立平. Glu-1和Glu-3等位变异对不溶性谷蛋白含量的影响. 作物学报, 2004, 30: 1086–1092

Liu L, Zhou Y, He Z H, Peña R J, Zhang L P. Effect of allelic variation at Glu-1 and Glu-3 loci on insoluble glutenin content. Acta Agron Sin, 2004, 30: 1086–1092 (in Chinese with English abstract)

[14]Zhang P P, He Z H, Zhang Y, Xia X C, Liu J J, Yan J, Zhang Y. Pan bread and Chinese white salted noodle qualities of Chinese winter wheat cultivars and their relationship with gluten protein fractions. Cereal Chem, 2007, 84: 370–378

[15]张平平, 马鸿翔, 姚金保, 何中虎. Glu-1位点等位变异及表达量对麦谷蛋白聚合体粒度分布的影响. 作物学报, 2009, 35: 1606–1612

Zhang P P, Ma H X, Yao J B, He Z H. Effect of allelic variation and expression quantity at Glu-1 loci on size distribution of glutenin polymer in common wheat. Acta Agron Sin, 2009, 35: 1606–1612 (in Chinese with English abstract)

[16]Larroque O R, Gianibelli M C, Lafiandra D, Sharp P, Bekes F. The molecular weight distribution of the glutenin polymer as affected by the number, type and expression levels of HMW-GS. In: Pogna N E, Romanò M, Pogna E A, Galterio G, eds. Proceedings of 10th International Wheat Genetics Symposium, Poestum, Roma, Italy, 2003. pp 447–450

[17]武茹, 张晓, 高德荣, 别同德, 吴荣林, 程顺和. Glu-A1和Glu-D1位点高分子量谷蛋白亚基共同缺失对弱筋小麦品质的影响. 麦类作物学报, 2011, 31: 450–454

Wu R, Zhang X, Gao D R, Bie T D, Wu R L, Cheng S H. Effect of double deletion of Glu-A1 and Glu-D1 locus high molecular of weight glutenin subunits on wheat quality. J Triticeae Crops, 2011, 31: 450–454 (in Chinese with English abstract)

[18]Jondiko T O, Alviola N J, Hays D B, Ibrahim A, Tilley M, Awika J M. Effect of high-molecular-weight glutenin subunit allelic composition on wheat flour tortilla quality. Cereal Chem, 2012, 89: 155–161

[19]Lawrence G J. Dough and baking quality of wheat line deficient in glutenin subunits controlled by the Glu-A1, Glu-B1 and Glu-D1 loci. J Cereal Sci, 1988, 7: 109–112

[20]Zhu Y F, Li Y W, Chen Y, Li H, Liang H, Yue S J, Zhang A M, Zhang X Q, Wang D W, Jia X. Generation and characterization of a high molecular weight glutenin 1Bx14-deficient mutant in common wheat. Plant Breed, 2005, 124: 421–427

[21]刘悦, 杨足君, 李光蓉, 刘明镜, 黄健, 任正隆. 四川南部和重庆地区小麦地方品种的高分子量谷蛋白亚基组成分析. 麦类作物学报, 2007, 27: 820–824

Liu Y, Yang Z J, Li G R, Liu M J, Huang J, Ren Z L. Diversity of HMW-GS in wheat landraces native to southern sichuan and Chongqing J Triticeae Crops, 2007, 27: 820–824

[22]杨恩年, 张洁, 杨武云, 邹裕春. 六倍体普通小麦高分子量谷蛋白亚基Glu-A1和Glu-B1共同缺失材料研究初报. 西南农业学报, 2007, 20: 1293–1295

Yang E N, Zhang J, Yang W Y, Zou Y C. A common wheat line with deletion of Glu-A1 and Glu-B1 locus of high molecular weight glutenin subunit. Southwest China J Agric Sci, 2007, 20: 1293–1295

[23]AACC International, Approved Methods of Analysis, 11th Edn. Available online only. AACCI: St. Paul, MN (2010). http://methods.aaccnet.org/toc.aspx

[24]Singh N K, Shepherd K W, Cornish G B. A simplified SDS-PAGE procedure for separating LMW subunits of glutenin. J Cereal Sci, 1991, 14: 203–208

[25]Liu L, He Z H, Yan J, Zhang Y, Xia X C, Peña R J. Allelic variation at the Glu-1 and Glu-3 loci, presence of 1B•1R translocation, and their effects on mixographic properties in Chinese bread wheats. Euphytica, 2005, 142: 197–204

[26]刘丽, 周阳, 何中虎, 阎俊, 张艳, Peña R J. Glu-1和Glu-3等位变异对小麦加工品质的影响. 作物学报, 2004, 30: 959–968

Liu L, Zhou Y, He Z H, Yan J, Zhang Y, Peña R J. Efect of aIlelic variation at Glu-1 and Glu-3 loci on processing quality in common wheat. Acta Agron Sin, 2004, 30: 959–968 (in Chinese with English abstract)

[27]张平平, 张勇, 夏先春, 何中虎. 小麦贮藏蛋白反相高效液相色谱分析体系研究. 中国农业科学, 2007, 40: 1002–1009

Zhang P P, Zhang Y, Xia X C, He Z H. Protocol establishment of reversed-phase high-performance liquid chromatography (RP-HPLC) for analyzing wheat gluten protein. Sci Agric Sin, 2007, 40: 1002–1009 (in Chinese with English abstract)

[28]Larroque O R, Gianibelli M C, Gomez Sanchez M, MacRitchie F. Procedure for obtaining stable protein extracts of cereal flour and whole meal for size-exclusion HPLC analysis. Cereal Chem, 2000, 77: 448–450

[29]Payne P I. Genetics of wheat storage protein and the effect of allelic variation on bread making quality. Ann Rev Plant Physiol, 1987, 38: 141–153

[30]Vawser M J, Cornish G B. Over-expression of HMW glutenin subunit Glu-B1x7 in hexaploid wheat varieties (Triticum aestivum). Aust J Agric Res, 2004, 55: 577–588

[31]Wieser H, Zimmermann G. Importance of amounts and proportions of high molecular weight subunits of glutenin for wheat quality. Eur Food Res Tech, 2000, 210: 324–330

[32]Huang D Y, Khan K. Characterization and quantification of native glutenin aggregates by multistacking sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) procedures. Cereal Chem, 1997, 74: 229–234

[33]Zhu J, Khan K. Quantitative variation of HMW glutenin subunits from hard red spring wheats grown in different environments. Cereal Chem, 2002, 79: 783–786

[34]Branlard G. Prediction of the bread wheat quality from HMW glutenins and gliadins. In: Lasztity L, Bekes F, eds. Gluten Proteins: Proceedings of the Third Gluten Protein Workshop. Budapest, Hungar, 1987. pp 604–612

[35]Kolster P, van Eeuwijk F A, van Gelder W M J. Additive and epistatic effects of allelic variation at the high molecular weight glutenin subunit loci in determining the bread-making quality of breeding lines of wheat. Euphytica, 1991, 55: 277–285

[36]Wieser H, Kieffer R. Correlations of the amount of gluten protein types to the technological properties of wheat flours determined on a micro-scale. J Cereal Sci, 2001, 34: 19–27

[37]张平平, 姚金保, 马鸿翔, 杨学明, 张鹏, 姚国才, 张旭, 杨丹. 宁麦9号衍生系的品质特性及与酥性饼干直径的关系. 麦类作物学报, 2013, 33: 1156–1161

Zhang P P, Yao J B, Ma H X, Yang X M, Zhang P, Yao G C, Zhang X, Yang D. Quality traits of Ningmai 9 and its derivate lines and their relationship with coolie diameter. J Triticeae Crops, 2013, 33: 1156–1161 (in Chinese with English abstract)

[38]Zhang Q J, Zhang Y, Zhang Y, He Z H, Peña R J. Effects of solvent retention capacities, pentosan content, and dough rheological properties on sugar snap cookie quality in Chinese soft wheat genotypes. Crop Sci, 2007, 47: 656–664

[39]Redinbaugh M G. Soft wheat quality targets for cultivars developed for the eastern U.S. Soft Wheat Quality Laboratory Annual Report, USDA-ARS, Soft Wheat Quality Lab., Ohio Agricultural Research and Development Center, Wooster, OH, USA, 2012. pp 24–26

[1] 张星星,王召军,杨玉双,王道文,郑文明,董振营. 利用HMW-GS全缺失突变体快速构建Glu-1位点近等渗入系[J]. 作物学报, 2016, 42(08): 1247-1252.
[2] 张平平,马鸿翔*,姚金保,周淼平,张鹏. 高分子量谷蛋白单亚基缺失对软质小麦宁麦9号加工品质的影响[J]. 作物学报, 2016, 42(05): 633-640.
[3] 杨江涛,庞伟民,王旭静*,吕少溥,唐巧玲,王志兴. 陆地棉GhRACK1启动子的克隆与缺失分析[J]. 作物学报, 2016, 42(03): 368-375.
[4] 杜海,冉凤,马珊珊,柯蕴倬,孙丽萍,李加纳,唐益雄. GmMYB042基因对类黄酮生物合成的调控作用[J]. 作物学报, 2016, 42(01): 1-10.
[5] 宋波,蓝岚,田福东,拓云,白月,姜自芹,申丽威,李文滨,刘珊珊. 大豆7S球蛋白α'亚基缺失及(a'+a)亚基双缺失品系的回交转育[J]. 作物学报, 2012, 38(12): 2297-2305.
[6] 夏家平,郭会君,谢永盾,赵林姝,古佳玉,赵世荣,李军辉,刘录祥. 小麦叶绿素缺失突变体Mt135的叶绿体基因差异表达分析[J]. 作物学报, 2012, 38(11): 2122-2130.
[7] 宋素洁,古佳玉,郭会君,赵林姝,赵世荣,李军辉,赵宝存,刘录祥. 小麦叶绿素缺失突变体Mt6172及其野生型叶片蛋白质组学双向差异凝胶电泳分析[J]. 作物学报, 2012, 38(09): 1592-1606.
[8] 吴磊,王丹,苏文悦,郭长虹,束永俊. 利用比较基因组学开发山羊草属InDel分子标记[J]. 作物学报, 2012, 38(07): 1334-1338.
[9] 赵洪兵, 郭会君, 赵林姝, 古佳玉, 赵世荣, 李军辉, 刘录祥. 空间环境诱变小麦叶绿素缺失突变体的主要农艺性状和光合特性[J]. 作物学报, 2011, 37(01): 119-126.
[10] 刘珊珊,滕卫丽**,张彬彬,葛玉君,刁桂珠,郑天慧,姜自芹,曾蕊,吴帅,李文滨*. 大豆7S球蛋白α-亚基缺失型种质创新[J]. 作物学报, 2010, 36(08): 1409-1413.
[11] 王旭静,李为民,唐巧玲,贾士荣,王志兴. 中棉(Gossypium arboreum)光锈导基因Gacab启动子在转基因烟草中的功能缺失分析[J]. 作物学报, 2009, 35(6): 1006-1012.
[12] 王春梅;别同德;陈全战;曹爱忠;陈佩度. 簇毛麦6V染色体短臂特异分子标记的开发和应用[J]. 作物学报, 2007, 33(10): 1595-1600.
[13] 郭顺堂;孟岩;张雪梅;张晓雷;齐静;邱丽娟;常汝镇. 中国大豆蛋白亚基构成分析与缺失部分亚基的特异大豆品种的筛选[J]. 作物学报, 2006, 32(08): 1130-1134.
[14] 麻浩;盖钧镒;张国正;官春云;丁安林. 大豆种子脂肪氧合酶缺失体类型的加工特性研究[J]. 作物学报, 2003, 29(02): 290-294.
[15] 孙辉;刘志勇; 李保云;刘广田. 利用PCR技术鉴别普通小麦Glu-1位点的某些等位基因[J]. 作物学报, 2002, 28(06): 734-737.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!