作物学报 ›› 2015, Vol. 41 ›› Issue (01): 15-21.doi: 10.3724/SP.J.1006.2015.00015
刘波1,李英慧1,于佰双2,王家军2,刘玉林1,常汝镇1,邱丽娟1,*
LIU Bo1, LI Ying-Hui1, YU Bai-Shuang2, WANG Jia-Jun2, LIU Yu-Lin1, CHANG Ru-Zhen1, QIU Li-Juan1,*
摘要:
大豆胞囊线虫3号生理小种在我国已发现的8个小种中分布最为广泛,严重影响大豆生产。中品03-5373 (ZP03-5373)是对3号小种免疫的优良抗源。本研究以中品03-5373为母本,与感病品种中黄13 (ZH13)杂交建立包含254个家系的重组自交系群体,利用SSR、EST-SSR、InDel和SNP等506个分子标记对该分离群体进行基因型鉴定,构建全长为2651.9 cM的遗传图谱,标记间平均距离为5.24 cM。结合抗性鉴定数据,在中品03-5373中检测到3个控制大豆胞囊线虫3号生理小种的QTL区间,分别位于Gm07 (SCN3-7)、Gm11 (SCN3-11)和Gm18 (SCN3-18)。其中SCN3-18可解释29.5%的抗性变异,为主效抗性位点;SCN3-7和SCN3-11分别控制6.2%和5.5%的抗性变异,为微效位点。SCN3-7与SCN3-18间存在显著的上位性互作。通过对中品03-5373祖先亲本2个QTL区间(SCN3-7和SCN3-11)侧翼标记的系谱追踪,进一步证明SCN3-7和SCN3-11与大豆胞囊线虫3号抗性相关。
[1]常玮, 韩英鹏, 胡海波, 李文滨. 基于元分析与结构域注释的大豆胞囊线虫抗性基因挖掘. 中国农业科学, 2010, 43: 4787–4795Chang W, Han Y P, Hu H B, Li W B. Mining candidate genes for resistance to soybean cyst nematode based on meta-analysis and domains annotations. Sci Agric Sin, 2010, 43: 4787–4795 (in Chinese with English abstract)[2]陈贵省, 颜清上, 闫淑荣, 邵桂花. 大豆胞囊线虫的危害与控制. 作物杂志, 2000, (1): 6–9Chen G S, Yan Q S, Yan S R, Shao G H. Destroy and control of soybean cyst nematode. Crops, 2000, (1): 6–9 (in Chinese)[3]袁翠平, 卢为国, 刘章雄, 李英慧, 李卫东, 关荣霞, 常汝镇, 邱丽娟. 大豆抗胞囊线虫4号生理小种新品系SSR标记分析. 作物学报, 2008, 34: 1858–1864 (in Chinese with English abstract)Yuan C P, Lu W G, Liu Z X, Li Y H, Li W D, Guan R X, Chang R Z, Qiu L J. SSR analysis of new developed soybean lines resistant to soybean cyst nematode (Heterodera glycines Ichinohe) race 4. Acta Agron Sin, 2008, 34: 1858–1864[4]Anand S C, Rao-Arelli A P. Genetic analyses of soybean genotypes resistant to soybean cyst nematode race 5. Crop Sci, 1989, 29: 1181–1184[5]Arelli P R, Young L D, Concibido V C. Inheritance of resistance in soybean PI567516C to LY1 nematode population infecting cv. Hartwig. Euphytica, 2009, 165: 1–4[6]Guo B, Sleper D A, Arelli P R, Shannon J G, Nguyen H T. Identification of QTLs associated with resistance to soybean cyst nematode races 2, 3 and 5 in soybean PI 90763. Theor Appl Genet, 2005, 111: 965–971[7]Concibido V C, Denny R L, Boutin S R, Hautea R, Orf J H, Young N D. DNA marker analysis of loci underlying resistance to soybean cyst nematode (Heterodera glycines Ichinohe). Crop Sci, 1994, 34: 240–246[8]Guo B, Sleper D A, Nguyen H T, Arelli P R, Shannon J G. Quantitative trait loci underlying resistance to three soybean cyst nematode populations in soybean PI 404198A. Crop Sci, 2006, 46: 224–233[9]Meksem K, Pantazopoulos P, Njiti V N, Hyten L D, Arelli P R, Lightfoot D A. ‘Forrest’ resistance to the soybean cyst nematode is bigenic: saturation mapping of the Rhg1and Rhg4 loci. Theor Appl Genet, 2001, 103: 710–717[10]Vuong T D, Sleper D A, Shannon J G, Nguyen H T. Novel quantitative trait loci for broad-based resistance to soybean cyst nematode (Heterodera glycines Ichinohe) in soybean PI 567516C. Theor Appl Genet, 2010, 121: 1253–1266[11]Kim M, Hyten D L, Bent A F, Diers B W. Fine mapping of the SCN resistance locus from PI88788. Plant Genome, 2010, 3: 81–89[12]Cook D E, Lee T G, Guo X L, Melito S, Wang K, Bayless A M, Wang J P, Hughes T J, Willis D K, Clemente T E, Diers B W, Jiang J M, Hudson M E, Bent A F. Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science, 2012, 338: 1206–1209[13]Liu S, Kandoth P K, Warren S D, Yeckel G, Heinz R, Alden J, Yang C L, Jamai A, Mellouki T E, Juvale P S, Hill J, Baum T J, Cianzio S, Whitham S A, Korkin D, Mitchum M G, Meksem Ket. A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature, 2012, 492: 256–260[14]Kim M, Hyten D L, Niblack T L, Diers, B W. Stacking resistance alleles from wild and domestic soybean sources improves soybean cyst nematode resistance. Crop Sci, 2011, 51: 934–943[15]刘章雄, 卢为国, 常汝镇, 邱丽娟. 大豆抗胞囊线虫4号生理小种的种质创新. 大豆科学, 2009, 27: 911–914Liu Z X, Lu W G, Chang R Z, Qiu L J. Creation of new soybean SCN4 resistant lines. Soybean Sci, 2008, 27: 911–914 (in Chinese with English abstract)[16]张姗姗, 李英慧, 李金英, 邱丽娟. 优良品系中品03-5373系谱的遗传解析及抗大豆胞囊线虫病相关标记鉴定. 作物学报, 2013, 39: 1746–1753Zhang S S, Li Y H, Li J Y, Qiu L J. Genetic dissection of elite line Zhongpin 03-5373 pedigree and identification of candidate markers related to resistance to soybean cyst nematode. Acta Agron Sin, 2013, 39: 1746–1753 (in Chinese with English abstract)[17]Liu Y L, Li Y H, Jochen C R, Mette M F, Liu Z X, Liu B, Zhang S S, Yan L, Chang R Z, Qiu L J. Identification of QTLs underlying plant height and seed weight in soybean. Plant Genome, online: doi: 10.3835/plantgenome2013.03.0006[18]Golden A M. Terminology and identity of infraspecific forms of the soybean cyst nematode (Heterodera glyecines). Plant Dis Rep, 1970, 54: 544–546[19]郑延海, 闫世纯. 大豆胞囊线虫生理小种的鉴定及大豆种质资源对其抗性的评价. 植物保护, 1997, 23(4): 31–32Zheng Y H, Yan S C. Identification of soybean cyst nematode species and the evaluation of the soybean germplasm’s resistance. Plant Prot, 1997, 23(4): 31–32 (in Chinese)[20]Song Q, Jia G, Zhu Y, Grant D, Nelson R T, Hwang E Y, Hyten D L, Cregan P B. Abundance of SSR motifs and development of candidate polymorphic SSR markers (BARCSOYSSR_1. 0) in soybean. Crop Sci, 2010, 50: 1950–1960[21]李英慧, 袁翠平, 张辰, 李伟, 南海洋, 常汝镇, 邱丽娟. 基于大豆胞囊线虫病抗性候选基因的SNP位点遗传变异分析. 遗传, 2009, 31: 1259–1264Li Y H, Yuan C P, Zhang C, Li W, Nan H Y Chang R Z, Qiu L J. Genetic variation of SNP loci based on candidate gene for resistance to soybean cyst nematode. Hereditas (Beijing), 2009, 31: 1259–1264 (in Chinese with English abstract)[22]王建康. 数量性状基因的完备区间作图方法. 作物学报, 2009, 35: 239–245Wang J K. Inclusive composite interval mapping of quantitative trait genes. Acta Agron Sin, 2009, 35: 239–245[23]Hyten D L, Choi I Y, Song Q J, Specht J E, Carter T E, Shoemaker R C, Hwang E Y, Matukumalli L K, Cregan P B. A high density integrated genetic linkage map of soybean and the development of a 1536 universal soy linkage panel for quantitative trait locus mapping. Crop Sci, 2010, 50: 960–968[24]Vorrips R E. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered, 2002, 93: 77–78[25]刘刚, 鲁绍雄. 利用连锁不平衡进行QTL精细定位的策略. 家畜生态学报, 2007, 27(6): 197–201Liu G, Lu S X. Strategties for fine mapping of QTL with linkage disequilibrium. Acta Ecol Anim Domast, 2007, 27(6): 197–201 (in Chinese with English abstract)[26]Lohnes D G, Bernard R L. Ancestry of US/Canadian commercial cultivars developed by public institutions. Soybean Genetics Newsletter-US Department of Agriculture, Agricultural Research Service, 1991[27]Anand S C, Gallo K M, Baker I A, Hartwig E E. Soybean plant introductions with resistance to races 4 or 5 of soybean cyst nematode. Crop Sci, 1988, 28: 563–564[28]Wu X, Blake S, Sleper D A, Shannon J G. QTL, additive and epistatic effects for SCN resistance in PI 437654. Theor Appl Genet, 2009, 118: 1093–1105[29]李莹, 王志, 焦广音, 常汝镇. 中国大豆遗传资源对大豆孢囊线虫4号生理小种的抗性鉴定研究. 中国农业科学, 1991, 24(5): 64–69Li Y, Wang Z, Jiao G Y, Chang R Z. Studies on resistance of soybean germplasm resources to race 4 of soybean cyst nematode. Sci Agric Sin, 1991, 24(5): 64–69 (in Chinese with English abstract)[30]吴海燕. 大豆与大豆胞囊线虫相互关系研究. 沈阳农业大学博士论文, 辽宁沈阳, 2003. pp 150–153Wu H Y. The Interaction of Resistance Soybean and Heterodera glycine. PhD Dissertation of Shenyang Agricultural University, Shenyang, China. 2003. pp 150–153 (in Chinese with English abstract)[31]Webb D M, Baltazar B M, Rao-Arelli A P, Schupp J, Clayton K, Keim P, Beavis W D. Genetic mapping of soybean cyst nematode race-3 resistance loci in the soybean PI437654. Theor Appl Genet, 1995, 91: 574–581[32]Concibido V C, Denny R L, Lange D A, Orf J H, Young N D. RFLP mapping and marker-assisted selection of soybean cyst nematode resistance in PI209332. Crop Sci, 1996, 36: 1643–1650[33]Concibido V C, Lange D A, Denny R L, Lange D A, Orf J H, Young N D. Genome mapping of soybean cyst nematode resistance genes in ‘Peking’, PI90763, and PI 88788 using DNA markers. Crop Sci, 1997, 37: 258–264[34]Glover K D, Wang D, Arelli P R, Carlson S R, Cianzio, Diers B W. Near isogenic lines confirm a soybean cyst nematode resistance gene from PI88788 on linkage group J. Crop Sci, 2004, 44: 936–941[35]Yue P, Sleper D A, Arelli P R. Mapping resistance to multiple races of in soybean PI89772. Crop Sci, 2001, 41: 1589–1595[36]Guo B, Sleper D A, Nguyen H T, Arelli P R, Shannon J G. Quantitative trait loci underlying resistance to three soybean cyst nematode populations in soybean PI404198A. Crop Sci, 2006, 46: 224–233[37]Mudge J, Cregan P B, Kenworthy J P, Kenworthy W J, Orf J H, Young N D. Two microsatellite markers that flank the major soybean cyst nematode resistance locus. Crop Sci, 1997, 37: 1611–1615[38]Cregan P B, Mudge J, Fickus E W, Danesh D, Denny R, Young N D. Two simple sequence repeat markers to select for soybean cyst nematode resistance conditioned by the rhg1 locus. Theor Appl Genet, 1999, 99: 811–818 |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[3] | 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557. |
[4] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[5] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[6] | 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209. |
[7] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[8] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[9] | 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571. |
[10] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[11] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[12] | 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643. |
[13] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[14] | 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366. |
[15] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
|