作物学报 ›› 2015, Vol. 41 ›› Issue (01): 1-14.doi: 10.3724/SP.J.1006.2015.00001
• 综述 • 下一篇
朱利泉,周燕
ZHU Li-Quan,ZHOU Yan
摘要:
甘蓝自交不亲和性是由多态性的S位点基因编码的蛋白质介导的信号传导途径实现的。该信号传导途径由8个蛋白质元件(SLG、SCR、SRK、MLPK、THL、ARC1、Exo70A1和MIP-MOD)组成, 本文详细综述了这些元件的编码基因、蛋白质元件的结构和功能, 以及元件间的相互作用所构成的信号传导过程。在此基础上, 根据新进展提出了今后可能的研究重点, 以期为包括甘蓝在内的芸薹属自交不亲和性的深入研究提供新的内容。
[1]Ockendon D J. Distribution of self-incompatibility alleles and breeding structure of open-pollinated cultivars of Brussels sprouts. Heredity,1974, 33: 159–171[2]Nasrallah J B, Kao T H, Goldberg M L, Nasrallah J B. A cDNA clone encoding an S locus specific glycoprotein from Brassica oleracea. Nature, 1985, 318: 263–267[3]Stein J C, Howlett B, Boyes D C, Nasrallah M E, Nasrallah J B. Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea. Proc Natl Acad Sci USA, 1991, 88: 8816–8820[4]Schopfer C R, Nasrallah M E, Nasrallah J B. The male determinant of self- incompatibility in Brassica. Science, 1999, 286: 1697–1700[5]Bower M S, Matias D D, Fernandes-Carvalho E, Mazzurco M, Gu T, Rothsteinand S J, Goring D R. Two members of the thioredoxin-h family interact with the kinase domain of a Brassica S locus receptor kinase. Plant Cell, 1996, 8: 1641–1650[6]Gu T, Mazzurco M, Sulaman W, Matias D, Goring D R. Binding of an arm repeat protein to the kinase domain of the S-locus receptor kinase. Proc Natl Acad Sci USA, 1998, 95: 382–387[7]Elias M, Drdova E, Ziak D. The exocyst complex in plants. Cell Biol, 2003, 27: 199–201[8]Murase K, Shiba H, Iwano M, Che F S, Watanabe M, Isogai A, Takayama S. A membrane-anchored protein kinase involved in Brassica self-incompatibility signaling. Science, 2004, 303:1516–1519[9]Hinata K, Okazaki K, Nishio T. Gene analysis of self-compatibility in Brassica campestris var. yellow sarson (a case of recessive epistatic modifier). In: Proceeding of the 6th International Rapeseed Conference, 1983. pp 354–359[10]Kandasamy M K, Paolillo D J, Faraday C D, Nasrallah J B, Nasrallah M E. The S-locus specific glycoproteins of Brassica accumulate in the cell wall of developing stigma papillae. Dev Biol, 1989, 134: 462–472[11]Nasrallah J B, Kao T H, Chen C H, Goldberg M L, Nasrallah M E. Amino-acid sequence of glycoproteins encoded by three alleles of the S locus of Brassica oleracea. Nature, 1987, 326: 617–619[12]Takayama S, Isogai A, Tsukamoto C, Ueda Y, Hinata K, Okazaki K, Suzuki A. Sequences of S-glycoproteins products of the Brassica campestris self-incompatibility locus. Nature, 1987, 326: 102–105[13]Takasaki T, Hatakeyama1 K, Suzuki G, Watanabe M, Isogai A, Hin K. The S receptor kinase determines self-incompatibility in Brassica stigma. Nature, 2000, 403: 913–916[14]Naithani S, Chookajorn T, Ripoll D R, Nasrallah J B. Structural modules for receptor dimerization in the S-locus receptor kinase extracellular domain. Proc Natl Acad Sci USA, 2007, 104: 12211–12216[15]Takayama S, Shiba H, Iwano M, Shimosato H, Che F S, Kai N, Watanabe M, Suzuki Go, Hinata K, Isogai A. The pollen determinant of self-incompatibility in Brassica campestris. Proc Natl Acad Sci USA, 1999, 97: 1920–1925[16]Sato K, Nishio T, Kimura R, Kusaba M, Suzuki T, Hatakeyama K, Ockendon A J, Satta Y. Coevolution of the S locus genes SRK, SLG and SCR/SP11 in B. oleracea and B. rapa. Genetics, 2002, 162: 931–940[17]Kusaba M, Dwyerb K, Hendershot J, Vrebalov J, Nasrallah J B, Nasrallaha M E. Self-incompatibility in the genus Arabidopsis: characterization of the S locus in the outcrossing A. lyrata and its autogamous relative A. thaliana. Plant Cell, 2001, 13: 627–643[18]Nasrallah J B, Liu P, Sherman-Broyles S, Schmidt R, Nasrallah M E. Epigenetic mechanisms for breakdown of self-incompatibility in interspecific hybrids. Genetics, 2007, 175: 1965–1973[19]Suzuki T, Kusaba M, Matsushita M, Okazaki K, Nishio T. Characterization of Brassica S-haplotypes lacking S-locus glycoprotein. FEBS Lett, 2000, 482: 102–108[20]Nasrallah J B, Yu S M, Nasrallah M E. Self-incompatibility genes of Brassica oleracea expression, isolation, and structure. Proc Natl Acad Sci USA, 1988, 85: 5551–5555[21]Fujimoto R, Sugimura T, Nishio T. Gene conversion from SLG to SRK resulting in self-compatibility in Brassica rapa. FEBS Lett, 2006, 580: 425–430[22]Dixit R, Nasrallah M E, Nasrallah J B. Post-transcriptional maturation of the S-receptor kinase of Brassica correlates with co-expression of the S-locus glycoprotein in the stigmas of two Brassica strains and in transgenic tobacco plants. Plant Physiol, 2000, 124: 297–312[23]Nasrallah J B. Self-incompatibility in the Brassicaceae. In: Schmidt R, Bancroft I, eds. Genetics and Genomics of the Brassicaceae, 2011. pp 389–411[24]Tsuchimatsu T, Suwabe K, Shimizu-Inatsugi R, Isokawa S, Pavlidis P, Stadler T, Suzuki G, Takayama S, Watanabe M, Shimizu K K. Evolution of self-compatibility in Arabidopsis by a mutation in the male specificity gene. Nature, 2010, 464: 1342–1346[25]Bücherl C A, van Esse G W, Kruis A, Luchtenberg J, Westphal A H, Aker J,van Hoek A, Albrecht C, Borst J W, de Vries S C. Visualization of BRI1 and BAK1(SERK3) membrane receptor hetero oligomers during brassinosteroid signaling. Plant Physiol, 2013, 162: 1911–1925[26]Stein J C, Nasrallah J B. A plant receptor-like gene, the S-locus receptor kinase of Brassica oleracea L., encodes a functional serine/threonine kinase. Plant Physiol, 1993, 101: 1103–1106[27]Shimosato H, Yokota N, Shiba H, Iwano M, Entani T, Che F, Watanabe M, Isogai A, Takayama S. Characterization of the SP11/SCR high affinity binding site involved in self/ nonself recognition in Brassica self-incompatibility. Plant Cell, 2007, 19: 107–117[28]Mazzurco M, Sulaman W, Elina H, Cock M J, Goring D R. Further analysis of the interactions between the Brassica S receptor kinase and three interacting proteins (ARC1, THL1 and THL2) in the yeast two-hybrid system. Plant Mol Biol, 2001, 45: 365–376[29]Goring D R, Rothstein S J. The S-locus receptor kinase gene in a self-incompatible Brassica napus line encodes a functional serine/threonine kinase. Plant Cell, 1992, 4: 1273–1281[30]Walker J C. Structure and function of the receptor-like protein kinases of higher plants. Plant Mol Biol, 1994, 26: 1599–1609[31]Hanks S K, Quinn A M, Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Sci New Series, 1988, 241: 42–52[32]Takaaki H, Kazuhiro C. Protein Kinase Cζ (PKCζ): Activation mechanism and cellular functions. J Biochem, 2003, 133: 1–7[33]Wang Z L, Liu J S, Sudom A, Ayres M, Li S, Wesche H, Powers J P, Walker N P C. Crystal structure of IRAK-4 kinase in complex with inhibitors: a serine/threonine kinase with tyrosine as a gatekeeper. Structure, 2006, 14: 1835–1844[34]Samuel M A, Yee D, Haasen K E, Goring D R. ‘Self’ pollen rejection through the intersection of two cellular pathways in the brassicaceae: self-incompatibility and the compatible pollen response. In: Franklin-Tong V E ed. Self-Incompatibility in Flowering Plants – Evolution, Diversity, and Mechanisms, Springer-Verlag Berlin Heidelberg 2008, pp 173–191[35]Cabrillac D, Cock J M, Dumas C, Gaude T. The S-locus receptor kinase is inhibited by thioredoxins and activated by pollen coat proteins. Nature, 2001, 410: 220–223[36]Lemmon M A, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell, 2010, 141: 1117–1134[37]Ehrlich M, Horbelt D, Marom B, Knaus P, Henis Y I. Homomeric and heteromeric complexes among TGF-band BMP receptors and their roles in signaling. Cell Signal, 2011, 23: 1424–1432[38]Chookajorn T, Kachroo A, Ripoll D R, Clark A G, Nasrallah J B. Specificity determinants and diversification of the Brassica self-incompatibility pollen ligand. Proc Natl Acad Sci USA, 2004, 101: 911–917[39]Kusaba M, Dwyerb K, Hendershot J, Vrebalov J, Nasrallah J B, Nasrallaha M E. Self-incompatibility in the genus Arabidopsis: characterization of the S locus in the outcrossing A. lyrata and its autogamous relative A. thaliana. Plant Cell, 2001, 13: 627–643[40]Mishima M, Takayama S, Sasaki K, Jee J, Kojima C, Isogai A, Shirakawa M. Structure of the male determinant factor for Brassica self-incompatibility. J Biol Chem, 2003, 278: 36389–36395[41]Takayama S, Shimosato H, Shiba H, Funato M, Che F S, Watanabe M, Iwano M, Isogai A. Direct ligand–receptor complex interaction controls Brassica self-incompatibility. Nature, 2001, 413: 534–538[42]Goh C S, Bogan A A, Joachimiak M, Walther D, Cohen F E. Co-evolution of proteins with their interaction partners. J Mol Biol, 2000, 299: 283–293[43]Goh C S, Cohen F E. Co-evolutionary analysis reveals insights into protein-protein interactions. J Mol Biol, 2002, 324: 177–192[44]Okamoto S, Sato Y, Sakamoto K, Nishio T. Distribution of similar self-incompatibility (S) haplotypes in different genera, Raphanus and Brassica. Sex Plant Repro, 2004, 17: 33–39[45]Kachroo A, Schopfer C R, Nasrallah M E, Nasrallah J B. Allele-specific receptor-ligand interactions in Brassica self-incompatibility. Science, 2001, 293: 1824–1826[46]Nishio T, Kusaba M. Sequence diversity of SLG and SRK in Brassica oleracea L. Ann Bot, 2000, 85: 141–146[47]Miege C, Ruffio-Chable V, Schierup M H, Cabrillac D, Dumas C, Gaude T, Cock J M. Intrahaplotype polymorphism at the Brassica S locus. Genetics, 2001, 159: 811–822[48]Boyes D C, Nasrallah J B. Physical linkage of the SLG and SRK genes at the self-incompatibility locus of Brassica oleracea. Mol Gen Genet, 1993, 236: 369–373[49]Gelhaye E, Rouhier N, Navrot N, Jacquot J P. The plant thioredoxin system. Cell Mol Life Sci, 2005, 62: 24–35[50]刘东, 朱利泉, 王小佳. 芸薹属植物自交不亲和分子机制的研究进展. 遗传, 2003, 25: 241–244Liu D, Zhu L Q, Wang X J. Mechanism of self-incompatibility in Brassica. Hereditas (Beijing), 2003, 25: 241–244[51]Bréhe?in C, Mouaheb N, Verdoucq L, Lancelin J M, Meyer Y. Characterization of determinants for the specificity of Arabidopsis thioredoxins h in yeast complementation. J Biol Chem, 2000, 275: 31641–31647[52]Haffani Y, Gaude T, Cock J, Goring D. Antisense suppression of thioredoxin h mRNA in Brassica napus cv. Westar pistils causes a low level constitutive pollen rejection response. Plant Mol Biol, 2004, 55: 619–630[53]Yamamoto M, Nasrallah J B. In planta assessment of the role of thioredoxin h proteins in the regulation of S-locus receptor kinase signaling in transgenic Arabidopsis. Plant Physiol, 2013, 163: 1387–1395[54]Takada Y, Sato T, Suzuki G, Shiba H, Takayama S, Watanabe M. Involvement of MLPK pathway in intraspecies unilateral incompatibility regulated by a single locus with stigma and pollen factors. G3, 2013, 3: 719–726[55]Kakita M, Shimosato H, Murase K, Isogai A, Takayama S. Direct interaction between S-locus receptor kinase and M-locus protein kinase involved in Brassica self-incompatibility signaling. Plant Biotech, 2007, 24: 185–190[56]Kakita M, Murase K, Iwano M, Matsumoto T, Watanabe M, Shiba H, Isogai A,Takayama S. Two distinct forms of M-locus protein kinase localize to the plasma membrane and interact directly with S-locus receptor kinase to transducer self-incompatibility signaling in Brassica rapa. Plant Cell, 2007, 19: 3961–3973[57]赵永斌, 朱利泉, 王小佳. 甘蓝MLPK基因的克隆与序列分析. 作物学报, 2006, 32: 46–50Zhao Y B, Zhu L Q, Wang X J. Cloning and sequence analysis of MLPK gene in Brassica oleracea. Acta Agron Sin, 2006, 32: 46–50 (in Chinese with English abstract)[58]Fujimoto R, Nishio T. Self-incompatibility. Bot Res, 2007, 45: 139–154[59]刘东, 朱利泉, 王小佳. 甘蓝自交不亲和信号传导中SRK底物ARC1蛋白编码序列的克隆与分析. 作物学报, 2004, 30: 427–431Liu D, Zhu L Q, Wang X J. Cloning and characterization of encoding sequence of SRK-binding protein ARC1 from Brassica olereacea L. in self-incompatibility signaling process. Acta Agron Sin, 2004, 30: 427–431 (in Chinese with English abstract)[60]Hatzfeld M. The armadillo family of structure proteins. Int Rev Cytol, 1998, 186: 179–224[61]Pringa E, Martinez-Noel G, Müller U, Harbers K. Interaction of the RING finger-related U-box motif of a nuclear dot protein with ubiquitin-conjugating enzymes. J Biol Chem, 2001, 276: 19617–19623[62]Watanabe M, Ito A, Takada Y, Ninomiya C, Kakizaki T, Takahata Y, Hatakeyama K, Hinata K, Suzuki G, Takasaki T. Highly divergent sequences of the pollen self-incompatibility (S) gene in class-I S haplotypes of Brassica campestris (syn. rapa) L. FEBS Lett, 2000, 473: 139–144[63]Groves M R, Barford D.Topological characteristics of helical repeat proteins. Structure Biol, 1999, 9: 383–389[64]Huber A H, Nelson W J, Weis W I. Three-dimensional structure of the armadillo repeat region of β-catenin. Cell, 1997, 90: 871–882[65]Coates J C. Armadillo repeat proteins: beyond the animal kingdom. Cell Biol, 2003, 13: 463–471[66]Harris T J, Peifer M. Decisions, decisions: β-catenin chooses between adhesion and transcription. Cell Biol, 2005, 15: 234–237[67]Koegl M, Hoppe T, Schlenker S, Ulrich H D, Mayer T U, Jentsch S. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell, 1999, 96: 635–644[68]Ohi M D, Vander Kooi C W, Rosenberg J A, Chazin W J, Gould K L. Structural insights into the U-box, a domain associated with multi-ubiquitination. Nat Struct & Mol Biol, 2003, 10: 250–255[69]Stone S L, Anderson E M, Mullen R T, Goring D R. ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible Brassica pollen. Plant Cell, 2003, 15: 885–898[70]Newbigin E, Vierstra R D. Plant reproduction: sex and self-denial. Nature, 2003, 425: 229–230[71]Deshaies R J, Joazeiro C A P. Ring domain E3 ubiquitin ligases. Annu Rev Biochem, 2009, 78: 399–434[72]Bowser R, Novick P. Sec15 protein, an essential component of the exocytotic apparatus, is associated with the plasma membrane and with a soluble 19.5S particle. J Cell Biol, 1991, 112: 1117–1131[73]Bowser R, Muller H, Govindan B, Novick P. Sec8p and Sec15p are components of a plasma membrane-associated 19.5S particle that may function downstream of Sec4p to control exocytosis. J Cell Biol, 1992, 118: 1041–1056[74]Samuel M A, Chong Y T, Haasen K E, Aldea-Brydges M G, Stone S L, Goring D R. Cellular pathways regulating response to compatible and self-incompatible pollen in Brassica and Arabidopsis stigmas intersect at Exo70A1, a putative component of exocyst complex. Plant Cell, 2009, 21: 2655–2671[75]Synek L, Schlager N, Eliás M, Quentin M, Hauser M T, Zárský V. AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development. Plant J, 2006, 48: 54–72[76]Li S P, Chen M, Yu D L,Ren S-C,Sun S F, Liu L D,Ketelaar T, Emons A M C, Liu C-M. Exo70A1-mediated vesicle trafficking is critical for tracheary element development in Arabidopsis. Plant Cell, 2013, 25: 1774–1786[77]Ding Y, Wang J, Lai J H C, Chan V H L, Wang X F, Cai Y, Tan X Y, Bao Y Q, Xia J, Robinson D G, Jiang L W. Exo70E2 is essential for exocyst subunit recruitment and EXPO formation in both plants and animals. Mol Biol Cell, 2014, 25: 412–426[78]Drdova E J, Synek L, Pecenková T, Hála M, Kulich I, Fowler J E, Murphy A S, Zárský V. The exocyst complex contributes to PIN auxin efflux carrier recycling and polar auxin transport in Arabidopsis. Plant Cell, 2013, 73: 709–719[79]Ikeda S, Nasrallah J B, Dixit R, Preiss S, Nasrallah M E. An aquaporin-like gene required for the Brassica self-incompatibility response. Science, 1997, 276: 1564–1566[80]吴志刚. 甘蓝自交不亲和相关基因MOD的克隆及其与ARC1的FISH定位研究. 西南大学硕士学位论文, 重庆, 2011Wu Z G. Cloning of MOD gene in Brassica oleracea associated with self-incompatibility and localization of MOD and ARC1 in Brassica oleracea by FISH. MS Thesis of Southwest University, Chongqing, China, 2011[81]Dixit R, Rizzo C, Nasrallah M, Nasrallah J. The Brassica MIP-MOD gene encodes a functional water channel that is expressed in the stigma epidermis. Plant Mol Biol, 2001, 45: 51–62[82]Kammerloher W, Fischer U, Piechottka G P, Schäffner A R. Water channels in the plant plasma membrane cloned by immunoselection from a mammalian expression system. Plant J, 1994. 6: 187–199[83]Kaldenhoff R, Grote K., Zhu J J, Zimmerman U. Significance of plasma lemma aquaporins for water-transport in Arabidopsis thaliana. Plant J, 1998, 14: 121–128[84]Fukai E, Nishio T, Nasrallah M E. Molecular genetic analysis of the candidate gene for MOD, a locus required for self-incompatibility in Brassica rapa. Mol Genet Genomics, 2001, 265: 519–525[85]Deshaies R J, Joazeiro C A P. Ring domain E3 ubiquitin ligases. Annu Rev Biochem, 2009, 78: 399–434[86]杨继涛. 芸薹属植物自交不亲和性研究进展. 陕西农业科学, 2008, 54: 115–121Yang J T. Research progress in Brassica self-incompatibility. Shanxi J Agric Sci, 2008, 54: 115–121 (in Chinese)[87]Stone S L, Anderson E M, Mullen R T, Goring D R. ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible Brassica pollen. Plant Cell, 2003, 15: 885–898[88]Liu S Y, Liu Y M, Yang X H, Tong C B, Edwards D, Parkin I A P, Zhao M X, Ma J X, Yu j Y, Huang S M, Wang X Y, Wang J Y, Lu K, Fang Z Y, Bancroft I, Yang T J, Hu Q, Wang X F, Yue Z, Li H J, Yang L F, Wu J, Zhou Q, Wang W X, King G J, Pires J C, Lu C X, Wu Z Y, Sampath P, Wang Z, Guo H, Pan S K, Yang L M, Min J M, Zhang D, Jin D C, Li W H, Belcram H, Tu J X, Guan G, Qi C K, Du D Z, Li J N, Jiang L C, Batley J, Sharpe A G, Park B S, Ruperao P, Cheng F, Waminal N E, Huang Y, Dong C H, Wang L, Li J P, Hu Z Y, Zhuang M, Huang Y, Huang J Y, Shi J Q, Mei D S, Liu J, Lee T H, Wang J P, Jin H Z, Li Z Y, Li X, Zhang J F, Xiao L, Zhou Y M, Liu Z S, Liu X Q, Qin R, Tang X, Liu W B, Wang Y P, Zhang Y Y, Lee J H, Kim H H, Denoeud F, Xu X, Liang X M, Hua W, Wang X W, Wang J, Chalhoub B, Paterson A H. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nature Commun, 2014, 5: 3930[89]Vanoosthuyse V, Tichtinsky G, Dumas C, Gaude T, Cock J M. Interaction of calmodulin, a sorting nexin and kinase-associated protein phosphatase with the Brassica oleracea S locus receptor kinase. Plant Physiol, 2003, 133: 919–929 |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[3] | 张以忠, 曾文艺, 邓琳琼, 张贺翠, 刘倩莹, 左同鸿, 谢琴琴, 胡燈科, 袁崇墨, 廉小平, 朱利泉. 甘蓝S-位点基因SRK、SLG和SP11/SCR密码子偏好性分析[J]. 作物学报, 2022, 48(5): 1152-1168. |
[4] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[5] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[6] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[7] | 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120. |
[8] | 余国武, 青芸, 何珊, 黄玉碧. 玉米SSIIb蛋白多克隆抗体的制备及其应用[J]. 作物学报, 2022, 48(1): 259-264. |
[9] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[10] | 左香君, 房朋朋, 李加纳, 钱伟, 梅家琴. 有毛野生甘蓝(Brassica incana)抗蚜虫特性研究[J]. 作物学报, 2021, 47(6): 1109-1113. |
[11] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
[12] | 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990. |
[13] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
[14] | 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637. |
[15] | 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649. |
|