欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (01): 15-21.doi: 10.3724/SP.J.1006.2015.00015

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

中品03-5373对大豆胞囊线虫3号生理小种免疫抗性的遗传解析

刘波1,李英慧1,于佰双2,王家军2,刘玉林1,常汝镇1,邱丽娟1,*   

  1. 1中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程 / 农业部北京大豆生物学重点实验室,北京100081;2黑龙江省农业科学院大豆研究所,黑龙江哈尔滨150086
  • 收稿日期:2014-04-25 修回日期:2014-09-06 出版日期:2015-01-12 网络出版日期:2014-11-11
  • 通讯作者: 邱丽娟, E-mail: qiulijuan@caas.cn, Tel: 10-82105843
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2010CB125903)和国家自然科学基金项目(31171575)资助。

Genetic Analysis of Immunity to Soybean Cyst Nematode Race 3 in Elite Line Zhongpin 03-5373

LIU Bo1, LI Ying-Hui1, YU Bai-Shuang2, WANG Jia-Jun2, LIU Yu-Lin1, CHANG Ru-Zhen1, QIU Li-Juan1,*   

  1. 1 National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Soybean Biology in Beijing, Agriculture of Ministry / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China?
  • Received:2014-04-25 Revised:2014-09-06 Published:2015-01-12 Published online:2014-11-11
  • Contact: 邱丽娟, E-mail: qiulijuan@caas.cn, Tel: 10-82105843

摘要:

大豆胞囊线虫3号生理小种在我国已发现的8个小种中分布最为广泛,严重影响大豆生产。中品03-5373 (ZP03-5373)是对3号小种免疫的优良抗源。本研究以中品03-5373为母本,与感病品种中黄13 (ZH13)杂交建立包含254个家系的重组自交系群体,利用SSR、EST-SSR、InDel和SNP等506个分子标记对该分离群体进行基因型鉴定,构建全长为2651.9 cM的遗传图谱,标记间平均距离为5.24 cM。结合抗性鉴定数据,在中品03-5373中检测到3个控制大豆胞囊线虫3号生理小种的QTL区间,分别位于Gm07 (SCN3-7)、Gm11 (SCN3-11)和Gm18 (SCN3-18)。其中SCN3-18可解释29.5%的抗性变异,为主效抗性位点SCN3-7SCN3-11分别控制6.2%和5.5%的抗性变异,为微效位点。SCN3-7SCN3-18间存在显著的上位性互作。通过对中品03-5373祖先亲本2个QTL区间(SCN3-7SCN3-11)侧翼标记的系谱追踪,进一步证明SCN3-7SCN3-11与大豆胞囊线虫3号抗性相关。

关键词: 大豆, 大豆胞囊线虫, 重组自交系, 分子标记, QTL定位

Abstract:

Soybean cyst nematode (SCN) race 3, one of the eight races identified in China, is widely distributed and severely reduced soybean yield. Zhongpin 03-5373 (ZP03-5373) is an elite line immune to SCN race 3. In this study, a recombinant inbred line (RIL) population was developed from a cross between ZP03-5373 and Zhonghuang 13 (ZH13). A genetic linkage map was constructed using a total of 506 molecular markers, including SSRs, EST-SSRs, InDel, and SNP. The total length of the genetic map was 2651.9 cM with an average marker spacing of 5.24 cM. Based on the phenotyping data, we detected three QTL intervals to dominate SCN3, including SCN3-7 (Gm07), SCN3-11 (Gm11), and SCN3-18 (Gm11). Main effect QTL, SCN3-18 could explain 29.5% of resistant variation. Two minor effect QTLs, SCN3-7 and SCN3-11, explained 6.2% and 5.5% of resistant variation, respectively. And it further showed there was significant epistatic interaction between SCN3-7 and SCN3-18 for resistance to SCN3. Both SCN3-7 and SCN3-11 were confirmed to be resistant to SCN3 by tracking flanking marker in the ancestors of ZP03-5373. These markers will be helpful for developing SCN resistant cultivars and cloning resistant genes by marker assisted selection.

Key words: Soybean, Soybean cyst nematode, Recombinant inbreed line, Molecular marker, QTL

[1]常玮, 韩英鹏, 胡海波, 李文滨. 基于元分析与结构域注释的大豆胞囊线虫抗性基因挖掘. 中国农业科学, 2010, 43: 4787–4795

Chang W, Han Y P, Hu H B, Li W B. Mining candidate genes for resistance to soybean cyst nematode based on meta-analysis and domains annotations. Sci Agric Sin, 2010, 43: 4787–4795 (in Chinese with English abstract)

[2]陈贵省, 颜清上, 闫淑荣, 邵桂花. 大豆胞囊线虫的危害与控制. 作物杂志, 2000, (1): 6–9

Chen G S, Yan Q S, Yan S R, Shao G H. Destroy and control of soybean cyst nematode. Crops, 2000, (1): 6–9 (in Chinese)

[3]袁翠平, 卢为国, 刘章雄, 李英慧, 李卫东, 关荣霞, 常汝镇, 邱丽娟. 大豆抗胞囊线虫4号生理小种新品系SSR标记分析. 作物学报, 2008, 34: 1858–1864 (in Chinese with English abstract)

Yuan C P, Lu W G, Liu Z X, Li Y H, Li W D, Guan R X, Chang R Z, Qiu L J. SSR analysis of new developed soybean lines resistant to soybean cyst nematode (Heterodera glycines Ichinohe) race 4. Acta Agron Sin, 2008, 34: 1858–1864

[4]Anand S C, Rao-Arelli A P. Genetic analyses of soybean genotypes resistant to soybean cyst nematode race 5. Crop Sci, 1989, 29: 1181–1184

[5]Arelli P R, Young L D, Concibido V C. Inheritance of resistance in soybean PI567516C to LY1 nematode population infecting cv. Hartwig. Euphytica, 2009, 165: 1–4

[6]Guo B, Sleper D A, Arelli P R, Shannon J G, Nguyen H T. Identification of QTLs associated with resistance to soybean cyst nematode races 2, 3 and 5 in soybean PI 90763. Theor Appl Genet, 2005, 111: 965–971

[7]Concibido V C, Denny R L, Boutin S R, Hautea R, Orf J H, Young N D. DNA marker analysis of loci underlying resistance to soybean cyst nematode (Heterodera glycines Ichinohe). Crop Sci, 1994, 34: 240–246

[8]Guo B, Sleper D A, Nguyen H T, Arelli P R, Shannon J G. Quantitative trait loci underlying resistance to three soybean cyst nematode populations in soybean PI 404198A. Crop Sci, 2006, 46: 224–233

[9]Meksem K, Pantazopoulos P, Njiti V N, Hyten L D, Arelli P R, Lightfoot D A. ‘Forrest’ resistance to the soybean cyst nematode is bigenic: saturation mapping of the Rhg1and Rhg4 loci. Theor Appl Genet, 2001, 103: 710–717

[10]Vuong T D, Sleper D A, Shannon J G, Nguyen H T. Novel quantitative trait loci for broad-based resistance to soybean cyst nematode (Heterodera glycines Ichinohe) in soybean PI 567516C. Theor Appl Genet, 2010, 121: 1253–1266

[11]Kim M, Hyten D L, Bent A F, Diers B W. Fine mapping of the SCN resistance locus from PI88788. Plant Genome, 2010, 3: 81–89

[12]Cook D E, Lee T G, Guo X L, Melito S, Wang K, Bayless A M, Wang J P, Hughes T J, Willis D K, Clemente T E, Diers B W, Jiang J M, Hudson M E, Bent A F. Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science, 2012, 338: 1206–1209

[13]Liu S, Kandoth P K, Warren S D, Yeckel G, Heinz R, Alden J, Yang C L, Jamai A, Mellouki T E, Juvale P S, Hill J, Baum T J, Cianzio S, Whitham S A, Korkin D, Mitchum M G, Meksem Ket. A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature, 2012, 492: 256–260

[14]Kim M, Hyten D L, Niblack T L, Diers, B W. Stacking resistance alleles from wild and domestic soybean sources improves soybean cyst nematode resistance. Crop Sci, 2011, 51: 934–943

[15]刘章雄, 卢为国, 常汝镇, 邱丽娟. 大豆抗胞囊线虫4号生理小种的种质创新. 大豆科学, 2009, 27: 911–914

Liu Z X, Lu W G, Chang R Z, Qiu L J. Creation of new soybean SCN4 resistant lines. Soybean Sci, 2008, 27: 911–914 (in Chinese with English abstract)

[16]张姗姗, 李英慧, 李金英, 邱丽娟. 优良品系中品03-5373系谱的遗传解析及抗大豆胞囊线虫病相关标记鉴定. 作物学报, 2013, 39: 1746–1753

Zhang S S, Li Y H, Li J Y, Qiu L J. Genetic dissection of elite line Zhongpin 03-5373 pedigree and identification of candidate markers related to resistance to soybean cyst nematode. Acta Agron Sin, 2013, 39: 1746–1753 (in Chinese with English abstract)

[17]Liu Y L, Li Y H, Jochen C R, Mette M F, Liu Z X, Liu B, Zhang S S, Yan L, Chang R Z, Qiu L J. Identification of QTLs underlying plant height and seed weight in soybean. Plant Genome, online: doi: 10.3835/plantgenome2013.03.0006

[18]Golden A M. Terminology and identity of infraspecific forms of the soybean cyst nematode (Heterodera glyecines). Plant Dis Rep, 1970, 54: 544–546

[19]郑延海, 闫世纯. 大豆胞囊线虫生理小种的鉴定及大豆种质资源对其抗性的评价. 植物保护, 1997, 23(4): 31–32

Zheng Y H, Yan S C. Identification of soybean cyst nematode species and the evaluation of the soybean germplasm’s resistance. Plant Prot, 1997, 23(4): 31–32 (in Chinese)

[20]Song Q, Jia G, Zhu Y, Grant D, Nelson R T, Hwang E Y, Hyten D L, Cregan P B. Abundance of SSR motifs and development of candidate polymorphic SSR markers (BARCSOYSSR_1. 0) in soybean. Crop Sci, 2010, 50: 1950–1960

[21]李英慧, 袁翠平, 张辰, 李伟, 南海洋, 常汝镇, 邱丽娟. 基于大豆胞囊线虫病抗性候选基因的SNP位点遗传变异分析. 遗传, 2009, 31: 1259–1264

Li Y H, Yuan C P, Zhang C, Li W, Nan H Y Chang R Z, Qiu L J. Genetic variation of SNP loci based on candidate gene for resistance to soybean cyst nematode. Hereditas (Beijing), 2009, 31: 1259–1264 (in Chinese with English abstract)

[22]王建康. 数量性状基因的完备区间作图方法. 作物学报, 2009, 35: 239–245

Wang J K. Inclusive composite interval mapping of quantitative trait genes. Acta Agron Sin, 2009, 35: 239–245

[23]Hyten D L, Choi I Y, Song Q J, Specht J E, Carter T E, Shoemaker R C, Hwang E Y, Matukumalli L K, Cregan P B. A high density integrated genetic linkage map of soybean and the development of a 1536 universal soy linkage panel for quantitative trait locus mapping. Crop Sci, 2010, 50: 960–968

[24]Vorrips R E. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered, 2002, 93: 77–78

[25]刘刚, 鲁绍雄. 利用连锁不平衡进行QTL精细定位的策略. 家畜生态学报, 2007, 27(6): 197–201

Liu G, Lu S X. Strategties for fine mapping of QTL with linkage disequilibrium. Acta Ecol Anim Domast, 2007, 27(6): 197–201 (in Chinese with English abstract)

[26]Lohnes D G, Bernard R L. Ancestry of US/Canadian commercial cultivars developed by public institutions. Soybean Genetics Newsletter-US Department of Agriculture, Agricultural Research Service, 1991

[27]Anand S C, Gallo K M, Baker I A, Hartwig E E. Soybean plant introductions with resistance to races 4 or 5 of soybean cyst nematode. Crop Sci, 1988, 28: 563–564

[28]Wu X, Blake S, Sleper D A, Shannon J G. QTL, additive and epistatic effects for SCN resistance in PI 437654. Theor Appl Genet, 2009, 118: 1093–1105

[29]李莹, 王志, 焦广音, 常汝镇. 中国大豆遗传资源对大豆孢囊线虫4号生理小种的抗性鉴定研究. 中国农业科学, 1991, 24(5): 64–69

Li Y, Wang Z, Jiao G Y, Chang R Z. Studies on resistance of soybean germplasm resources to race 4 of soybean cyst nematode. Sci Agric Sin, 1991, 24(5): 64–69 (in Chinese with English abstract)

[30]吴海燕. 大豆与大豆胞囊线虫相互关系研究. 沈阳农业大学博士论文, 辽宁沈阳, 2003. pp 150–153

Wu H Y. The Interaction of Resistance Soybean and Heterodera glycine. PhD Dissertation of Shenyang Agricultural University, Shenyang, China. 2003. pp 150–153 (in Chinese with English abstract)

[31]Webb D M, Baltazar B M, Rao-Arelli A P, Schupp J, Clayton K, Keim P, Beavis W D. Genetic mapping of soybean cyst nematode race-3 resistance loci in the soybean PI437654. Theor Appl Genet, 1995, 91: 574–581

[32]Concibido V C, Denny R L, Lange D A, Orf J H, Young N D. RFLP mapping and marker-assisted selection of soybean cyst nematode resistance in PI209332. Crop Sci, 1996, 36: 1643–1650

[33]Concibido V C, Lange D A, Denny R L, Lange D A, Orf J H, Young N D. Genome mapping of soybean cyst nematode resistance genes in ‘Peking’, PI90763, and PI 88788 using DNA markers. Crop Sci, 1997, 37: 258–264

[34]Glover K D, Wang D, Arelli P R, Carlson S R, Cianzio, Diers B W. Near isogenic lines confirm a soybean cyst nematode resistance gene from PI88788 on linkage group J. Crop Sci, 2004, 44: 936–941

[35]Yue P, Sleper D A, Arelli P R. Mapping resistance to multiple races of in soybean PI89772. Crop Sci, 2001, 41: 1589–1595

[36]Guo B, Sleper D A, Nguyen H T, Arelli P R, Shannon J G. Quantitative trait loci underlying resistance to three soybean cyst nematode populations in soybean PI404198A. Crop Sci, 2006, 46: 224–233

[37]Mudge J, Cregan P B, Kenworthy J P, Kenworthy W J, Orf J H, Young N D. Two microsatellite markers that flank the major soybean cyst nematode resistance locus. Crop Sci, 1997, 37: 1611–1615

[38]Cregan P B, Mudge J, Fickus E W, Danesh D, Denny R, Young N D. Two simple sequence repeat markers to select for soybean cyst nematode resistance conditioned by the rhg1 locus. Theor Appl Genet, 1999, 99: 811–818

[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[11] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[12] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[13] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[14] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[15] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!