欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (01): 31-41.doi: 10.3724/SP.J.1006.2015.00031

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

花生转录因子基因NAC4的等位变异分析

李文,万千,刘风珍*,张昆,张秀荣,厉广辉,万勇善   

  1. 山东农业大学农学院 / 作物生物学国家重点实验室 / 山东省作物生物学重点实验室,山东泰安 271018
  • 收稿日期:2014-04-16 修回日期:2014-09-30 出版日期:2015-01-12 网络出版日期:2014-11-11
  • 通讯作者: 刘风珍, E-mail: liufz@sdau.edu.cn, Tel: 0538-8241540
  • 基金资助:

    本研究由山东省花生良种产业化工程项目, 山东省现代农业产业技术体系花生创新团队建设项目(SDAIT-05-011-02), 国家现代农业产业技术体系建设专项(CARS-14), 国家“十二五”科技支撑计划项目(2011BAD35B04)和国家自然科学基金项目(31271757)资助。

Allelic Variation of Transcription Factor Genes NAC4 in Arachis Species

LI Wen,WAN Qian,LIU Feng-Zhen*,ZHANG Kun,ZHANG Xiu-Rong,LI Guang-Hui,WAN Yong-Shan   

  1. State Key Laboratory of Crop Biology / Shandong Key Laboratory of Crop Biology / College of Agronomic Sciences, Shandong Agricultural University, Tai’an 271018, China
  • Received:2014-04-16 Revised:2014-09-30 Published:2015-01-12 Published online:2014-11-11
  • Contact: 刘风珍, E-mail: liufz@sdau.edu.cn, Tel: 0538-8241540

摘要:

NAC转录因子在植物应答非生物胁迫中起重要作用。利用生物信息学分析推测花生栽培种转录因子基因AhNAC4 (登录号为HM776131.1)属于抗旱相关转录因子基因,对比栽培品种山花11 AhNAC4的2条cDNA序列(ShrNAC4-aShrNAC4-b)及其相应的DNA序列(ShNAC4-aShNAC4-b)表明,AhNAC4全长为1244 bp,编码区长度为1050 bp,含有2个内含子,分别位于182~279 bp和547~642 bp处,编码蛋白包含349个氨基酸。从抗旱性不同的32个栽培品种分离得到4类AhNAC4,分别命名为AhNAC4-a1、AhNAC4-a2、AhNAC4-b1AhNAC4-b2,缩写为a1、a2、b1b2a1a2为等位基因,二者在717 bp处存在1个碱基差异,引起第174位氨基酸的改变,b1b2为等位基因,二者存在14个SNP位点,其中717 bp和924 bp处碱基的差异引起第174位和244位氨基酸的改变。供试品种中基因型为a1a1b1b1a1a1b2b2、a2a2b1b1、a2a2b2b2的品种数分别为10、5、15和2。从19个野生种中分离得到11类NAC4的DNA序列(Aw1NAC4-Aw11NAC4),Aw1NAC4与栽培种b1、b2的核苷酸序列同源性最高,Aw2NAC4与栽培种a1、a2核苷酸序列同源性最高。推测栽培种a1基因编码蛋白对花生抵御干旱起关键作用,a1b1基因编码蛋白的功能与野生种更接近。

关键词: 花生, 转录因子, NAC, 等位变异

Abstract:

 

NAC transcription factors play an important role in response to abiotic stress of plant. In this paper, bioinformatic analysis indicated that transcription factor gene AhNAC4 (accession number HM776131.1) can response to drought signal. The comparison of cDNAs (ShrNAC4-a and ShrNAC4-b) and genomic DNAs (ShNAC4-a and ShNAC4-b) from Shanhua 11 showed that AhNAC4 has a full length of 1244 bp and an ORF of 1050 bp, containing two introns at 182–279 bp and 547–642 bp, and encoding 349 amino acids. Four kinds of AhNAC4 genes, named as AhNAC4-a1, AhNAC4-a2, AhNAC4-b1 and AhNAC4-b2 (abbreviations: a1, a2, b1, and b2), were cloned from 32 cultivars with different drought resistances. Among them a1, with only one locus different between the two genes, leading to the difference of corresponding amino acids at site 174; b1 and b2 were alleles, with 14 SNPs, of which two SNPs led to differences of the corresponding amino acids at sites 174 and 244. There were four genotypes of AhNAC4 in the 32 cultivars, containing 10 a1a1b1b1, 5 a1a1b2b2, 15 a2a2b1b1, and 2 a2a2b2b2. Meanwhile, 11 NAC4 genes (Aw1NAC4Aw11NAC4) were isolated from 19 wild peanut accessions in Arachis. Aw2NAC4 had the highest homology of nucleotide sequence witha1 or a2, and b1 or b2 had the highest homology of nucleotide sequence with Aw1NAC4. It is speculated that the protein encoding a1 plays a key role in responding drought stress, and the function of the proteins encoding a1 and b1 genes is closer with that of wild species. and a2 were alleles

Key words: Peanut, Transcription factor, NAC, Allelic variation

[1]Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M. Genesinvolved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell, 1997, 9: 841–857

[2]Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y,Yamamoto K, Kikuchi S. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res, 2003, 10: 239–247

[3]Duval M, Hsieh T F, Kim S Y, Thomas T L. Molecular characterization of AtNAM: A member of the Arabidopsis NAC domain superfamily. Plant Mol Biol, 2002, 50: 237–248

[4]Kusano H, Asano T, Shimada H, Kadowaki K. Molecular characterization of ONAC300, a novel NAC gene specifically expressed at early stages in various developing tissues of rice. Mol Genet &Genomics, 2005, 272: 616–626

[5]Zhong R Q, Demura T, Ye Z H. SNDI, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell, 2006, 18: 3158–3170

[6]Kim S Y, Kim S G, Kim Y S, Seo P J, Bae M, Yoon H K, Park C M. Exploring membrane-associated NAC transcription factors in Arabidopsis: Implications for membrane biology in genome regulation. Nucl Acids Res, 2006, 35: 203–213

[7]Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. NAC transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta, 2012, 1819: 97–103

[8]孙利军, 李大勇, 张慧娟, 宋凤鸣. NAC转录因子在植物抗病和抗非生物胁迫反应中的作用. 遗传. 2012, 34: 993–1002

Sun L J, Li D Y, Zhang H J, Song F M. Functions of NAC transcription factors in biotic and abiotic stress responses in plants. Hereditas(Beijing), 2012, 34: 993–1002 (in Chinese with English abstract)

[9]Tran L, Nakashima K, Sakuma Y, Simpson S D, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi- Shinozak K. Isolation and function analysis of Arabidopsis stress inducible NAC transcription factors that bind to a drought responsive cis-element in the early responsive to dehydration stress promoter. Plant Cell, 2004, 16: 2481–2498

[10]Ohnishi T, Sugahara S, Yamada T, Kikuchi K, Yoshiba Y, Hirano H Y, Tsutsumi N. OsNAC6, a member of the NAC gene family, is induced by various stresses in rice. Genes Genet Syst, 2005, 80: 135–139

[11]Zheng X N, Chen B, Lu G J, Han B. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun, 2009, 379: 985–989

[12]Gao F, Xiong A S, Peng R H, Jin X F, Xu J, Zhu B, Chen J M, Yao QH. OsNAC52, a rice NAC transcription factor, potentially responds to ABA and confers drought tolerance in transgenic plants. Plant Cell, 2010, 100: 255–262

[13]Hu H H, Dai M Q, Yao J L, Xiao B, Li X H, Zhang Q F, Xiong L Z. Overexpression a NAM, ATAF, and CUC(NAC)transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA, 2006, 103: 12987–12992

[14]刘美英, 冶晓芳, 唐益苗, 高世庆, 张朝, 赵昌平, 陈学平. TaNAC提高了转基因烟草的抗旱功能. 中国烟草学报, 2010, 16(6): 82–88

Liu M Y, Ye X F, Tang Y M, Gao S Q, Zhang C, Zhao C P, Chen X P. Effect of TaNAC on drought resistance in transgenic tobaccos. Acta Tab Sin, 2010, 16(6): 82–88 (in Chinese with English abstract)

[15]邵凤霞, 柳展基, 魏丽奇, 曹敏, 毕玉平. 花生NAC类新基因AhNAC1的克隆及序列分析. 西北植物学报, 2008, 28: 1929–1934

Shao F X, Liu Z J, Wei L Q, Cao M, Bi Y P. Cloning and sequence analysis of a novel NAC-like gene AhNAC1 in peanut (Arachis hypogaea). Acta Bot Boreali-Occident Sin, 2008, 28: 1929–1934 (in Chinese with English abstract)

[16]刘旭, 李玲. 花生NAC转录因子AhNAC2和AhNAC3的克隆及转录特征. 作物学报, 2009, 35: 541–545

Liu X, Li L. Cloning and characterization of the NAC-like gene AhNAC2 and AhNAC3 in peanut. Acta Agron Sin, 2009, 35: 541–545 (in Chinese with English abstract)

[17]Jin H X, Huang F, Cheng H, Song H N, Yu D Y. Overexpression of the GmNAC2 Gene, an NAC transcription factor, reduces abiotic stress tolerance in tobacco. Plant Mol Biol Rep, 2013, 31: 435–442

[18]Liu X, Zhang B Y, Hong L, Su L C, Liang X Q, Li X Y, Li L. Molecular characterization of Arachis hypogaea NAC2 (AhNAC2) reveals it as a nac-Like protein in peanut. Biotechnol Biotechnol Equip, 2010, 4: 2066–2070

[19]Liu X, Liu S, Wu J L, Zhang B Y, Li X Y, Yan Y C, Li L. Overexpression of Arachis hypogaea NAC3 in tobacco enhances dehydration and drought tolerance by increasing superoxide scavenging. Plant Physiol Biochem, 2013,70: 354–359

[20]厉广辉, 张昆, 刘风珍, 万勇善. 不同抗旱性花生品种根系形态及生理特性. 作物学报, 40: 531–541

Li G H, Zhang K, Liu F Z, Wan Y S. Morphological and physiological traits of root in different drought resistant peanut cultivars. Acta Agron Sin, 2014 40: 531–541 (in Chinese with English abstract)

[21]厉广辉, 张昆, 刘风珍, 刘丹丹, 万勇善. 不同抗旱性花生品种的叶片形态及生理特性. 中国农业科学, 2014, 47: 644–654

Li G H, Zhang K, Liu F Z, Liu D D, Wan Y S. Morphological and physiological traits of leaf in different drought resistant peanut cultivars. Sci Agric Sin, 2014, 47: 644–654 (in Chinese with English abstract)

[22]张秀荣. 花生Cu/Zn-SOD基因分子特征及其表达差异分析. 山东农业大学硕士论文, 山东泰安, 2013

Zhang X R. Molecular characteristics and differential expression analysis of Cu/Zn-SOD gene in peanut (Arachis hypogaea L.). MS Thesis of Shandong Agriculture University, Taian, China, 2013 (in Chinese with English abstract)

[23]Moretzsohn M C, Gouvea E G, Inglis P W, Leal-Bertioli S C, Valls J F, Bertioli D J. A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers. Ann Bot, 2013, 111: 113–126

[24]杨建昌, 王志琴, 朱庆森. 水稻品种的抗旱性及其生理特性的研究. 中国农业科学, 1995, 28: 65–72

Yang J C, Wang Z Q, Zhu Q S. Drought resistance and its physiological characteristics in rice varieties. Sci Agric Sin, 1995, 28(5): 65–72 (in Chinese)

[25]Pimratch S, Jogloy S, Vorasoot N, Toomsan B, Patanothai A, Holbrook C C. Relationship between biomass production and nitrogen fixation under drought-stress conditions in peanut genotypes with different levels of drought resistance. J Agron Crop Sci, 2008, 194: 15–25

[26]Mardeh A S S, Ahmadi A, Poustini K, Mohammadi V. Evaluation of drought resistance indices under various environmental conditions. Field Crops Res, 2006, 98: 222–229

[27]Fukai S, Pantuwan G, Jongdee B, Cooper M. Screening for drought resistance in rainfed lowland rice. Field Crops Res, 1999, 64: 61–74

[28]张智猛, 戴良香, 丁红, 陈殿绪, 杨伟强, 宋文武, 万书波. 中国北方主栽花生品种抗旱性鉴定与评价. 作物学报, 2012, 38: 495–504

Zhang Z M, Dai L X, Ding H, Chen D X, Yang W Q, Song W W, Wan S B. Identification and evaluation of drought resistance in different peanut varieties widely grown in northern China. Acta Agron Sin, 2012, 38: 495–504 (in Chinese with English abstract)

[29]张智猛, 戴良香, 宋文武, 陈静, 石运庆. 花生抗旱性鉴定指标的筛选与评价. 植物生态学报, 2011, 35: 100–109

Zhang Z M, Wan S B, Dai L X, Song W W, Chen J, Shi Y Q. Estimating and screening of drought resistance indexes of peanut. Chin J Plant Ecol, 2011, 35: 100–109 (in Chinese with English abstract)

[30]严美玲, 李向东, 矫岩林, 王丽丽. 不同花生品种的抗旱性比较鉴定. 花生学报, 2004, 33(1): 8–12

Yan M L, Li X D, Jiao Y L, Wang L L. Identification of drought resistance in different peanut varieties. Journal of Peanut Science, 2004, 33(1): 8–12(in Chinese)

[31]Burow M D, Simpson C E, Faries M W, Starr J L, Paterson A H. Molecular biogeographic study of recently described B- and A-genome Arachis species, also providing new insights into the origins of cultivated peanut. Genome, 2009, 52: 107–119

[32]张新友. 挖掘利用近缘野生种质加强花生种质创新. 作物杂志, 2012, (6): 6–7

Zhang X Y. Excavating and taking advantage of relatives wild germplasm to strengthen germplasm innovation of peanut. Crops, 2012, (6): 6–7 (in Chinese)

[33]陈本银, 姜慧芳, 任小平, 廖伯寿, 黄家权. 野生花生抗青枯病种质的发掘及分子鉴定. 华北农学报, 2008, 23(3): 170–175

Chen B Y, Jiang H F, Ren X P, Liao B S, Huang J Q. Identification and molecular traits of Arachis species with resistance to bacterial wilt. Acta Agric Boreali-Sin, 2008, 23(3): 170–175 (in Chinese with English abstract)

[1] 张钰坤, 陆赢, 崔看, 夏石头, 刘忠松. 芥菜种子颜色调控基因TT8的等位变异及其地理分布分析[J]. 作物学报, 2022, 48(6): 1325-1332.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[4] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[5] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[6] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[7] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[8] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[9] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[10] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[11] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[12] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[13] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[14] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[15] 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!