作物学报 ›› 2015, Vol. 41 ›› Issue (01): 42-48.doi: 10.3724/SP.J.1006.2015.00042
吕蕊花1,金筱耘2,赵爱春1,吉洁3,刘长英1,李军1,蒲龙3,鲁成1,余茂德1
LÜ Rui-Hua1,JIN Xiao-Yun2,ZHAO Ai-Chun1,JI Jie3,LIU Chang-Ying1,LI Jun1,PU Long3,LU Cheng1,YU Mao-De1
摘要:
分别以果桑肥大性菌核病菌和油菜菌核病菌的子囊孢子交叉接种油菜和果桑。结果表明,杯盘菌子囊孢子能够侵染油菜,同样,核盘菌子囊孢子能够侵染果桑;在受侵染的桑椹上2种病菌均产生分生孢子梗和分生孢子,而在油菜上不产生。显微镜观察,杯盘菌的子囊盘外囊被切面为圆胞组织结构,核盘菌为角胞组织结构。SRAP分子标记和聚类结果表明,采自西南地区果桑上的杯盘菌和油菜上核盘菌基本各自聚在一类,其中一个杯盘菌分离物和一个核盘菌分离物聚在一类,表现特别。2种寄主上的病菌子囊孢子能相互侵染,果桑和油菜不能间套种植。
[1]蒯元璋, 吴福安. 桑椹菌核病原及病害防治技术综述. 蚕业科学, 2012, 38: 1099–1104Kuai Y Z, Wu F A. A review on pathogens of mulberry fruit sclerotiniosis and its control technology. J Sci Sericul, 2012, 38: 1099–1104 (in Chinese with English abstract)[2]黄君霆, 朱万民, 夏建国, 向仲怀. 中国蚕丝大全. 成都: 四川科学技术出版社, 1996. pp 854–855Huang J T, Zhu W M, Xia J G, Xiang Z H. Complete Works of Sericultural Technology in China. Chengdu: Sichuan Scientific & Technical Press, 1996. pp 854–855 (in Chinese)[3]陈利锋, 徐敬友. 农业植物病理学(第3版). 北京: 中国农业出版社, 2009. pp 213–215Chen L F, Xu J Y. Agricultural Phytopathology, 3rd edn. Beijing: China Agriculture Press, 2009. pp 213–215 (in Chinese)[4]Adams P B, Ayers W A. Ecology of Sclerotinia species. Phytopathology, 1979, 69: 896–898[5]杨新美. 油菜菌核病在我国的寄主范围及生态特性的调查研究. 植物病理学报, 1959, 2: 111–122Yang X M. An investigation on the host range and some ecological aspects of the Sclerotinia disease of the rape plant. Acta Phytopathol Sin, 1959, 2: 111–122 (in Chinese with English abstract)[6]郭文信, 薛春夫, 何来新, 董永强, 高深. 油菜高产栽培技术. 现代化农业, 1994, 5: 24–26Guo W X, Xue C F, He L X, Dong Y Q, Gao S. High yield cultivation technoloyg of rape. Mod Agric, 1994, 5: 24–26 (in Chinese with English abstract)[7]庄文颖. 中国真菌志. 北京: 科学出版社, 1998. pp 62–64Zhuang W Y. Flora Fungorum Sinicorum. Beijing: Science Press, 1998. pp 62–64 (in Chinese) [8]Purdy L H. Sclerotinia sclerotiorum: history, diseases and symptomatology, host range, geographic distribution and impact. Phytopathology, 1979, 69: 875–880[9]Abawi G S, Grogan R G. Epidemiology of diseases caused by Sclerotinia species. Phythopathology, 1979, 69: 899–904[10]Schwartz H F, Steadman J R. Factors affecting sclerotium populations of, and apothecium production by Sclerotinia sclerotiorum. Phytopathology, 1978, 68: 383–388[11]Steadman J R. Control of plant diseases caused by Sclerotinia species. Phytopathology, 1979, 69: 904–907[12]Hao J J, Subbarao K V, Duniway J M. Germination of Sclerotinia minor and S.sclerotiorum sclerotia under various soil moisture and temperature Combinations. Phytopathology, 2003, 93: 443–450[13]Wu B M, Subbarao K V. Effects of soil temperature, moisture, and burial depths on carpogenic germination of Sclerotinia sclerotiorum and S. minor. Ecol Epidemiol, 2008, 98: 1144–1152[14]Mila A L, Yang X B. Effects of fluctuating soil temperature and water potential on sclerotia germination and apothecial production of Sclerotinia sclerotiorum. Plant Dis, 2008, 92: 78–82[15]方中达. 植病研究方法. 北京: 中国农业出版社, 1998. pp 122–126Fang Z D. Research Methods for Phytopathology. Beijing: China Agriculture Press, 1998. pp 122–126 (in Chinese)[16]Mei J, Qian L, Disi J O, Yang X, Li Q, Frauen M, Cai D, Qian W. Identification of resistant sources against Sclerotinia sclerotiorum in Brassica species with emphasis on B. oleracea. Euphytica, 2011, 177: 393–399[17]吴红发, 黄东益, 黄小龙, 周鑫, 程文杰. 几种内生真菌DNA提取方法的比较. 中国农学通报, 2009, 25: 62–64Wu H F, Huang D Y, Huang X L, Zhou X, Cheng W J. Comparing study on several methods for DNA extraction from endophytic fungi. Chin Agric Sci Bull, 2009, 25: 62–64 (in Chinese with English abstract)[18]中国农业科学院研究所, 中国桑树栽培学. 上海: 上海科学技术出版社, 1985. pp 300–301The Research Institute of Chinese Academy of Agricultural Sciences. Cultivation Science of Mulberry Tree in China. Shanghai: Shanghai Scientific & Technical Press, 1985. pp 300–301 (in Chinese)[19]Kimura K. Mulberry Disease of Japan. Tokyo: Kenpakusha Publishing House, 1979. pp 109–110 (in Japanese)[20]Sung K H, Wang G K, Gyoo B S, Sung H N. Identification and distribution of two fungal species causing sclerotial disease on mulberry fruits in Korea. Mycobiology, 2007, 35: 87–90[21]王仲怡, 包世英, 段灿星, 宗绪晓, 朱振东. 豌豆抗白粉病资源筛选及分子鉴定. 作物学报, 2013, 39: 1030–1038Wang Z Y, Bao S Y, Duan C X, Zong X X, Zhu Z D. Screening and molecular identification of resistance to powdery mildew in pea germplasm. Acta Agron Sin, 2013, 39: 1030–1038 (in Chinese with English abstract) |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[3] | 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8和BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180. |
[4] | 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221. |
[5] | 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811. |
[6] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[7] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[8] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[9] | 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39. |
[10] | 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740. |
[11] | 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823. |
[12] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[13] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
[14] | 姚佳瑜, 于吉祥, 王志琴, 刘立军, 周娟, 张伟杨, 杨建昌. 水稻内源油菜素甾醇对施氮量的响应及其对颖花退化的调控作用[J]. 作物学报, 2021, 47(5): 894-903. |
[15] | 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990. |
|