欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (03): 440-447.doi: 10.3724/SP.J.1006.2015.00440

• 耕作栽培·生理生化 • 上一篇    下一篇

不同产量水平甘薯品种光合产物分配差异及其原因

柳洪鹃1,史春余1,*,柴沙沙2   

  1. 1 山东农业大学农学院 / 作物生物学国家重点实验室, 山东泰安 271018; 2 湖北省农业科学院粮食作物研究所, 湖北武汉, 430064
  • 收稿日期:2014-09-18 修回日期:2014-12-19 出版日期:2015-03-12 网络出版日期:2015-01-12
  • 通讯作者: 史春余, E-mail: scyu@sdau.edu.cn, Tel: 0538-8246259
  • 基金资助:

    本研究国家自然科学基金项目(31371577)和山东省薯类产业创新团队首席专家项目(SDAIT-10-011-01)资助。

Difference and Related Reason for Assimilate Distribution of Sweetpotato Varieties with Different Tuber Root Yields

LIU Hong-Juan1,SHI Chun-Yu1,*,CHAI Sha-Sha2   

  1. 1 State Key Laboratory of Crop Biology / College of Agrinomic Sciences, Shandong Agricultural University, Tai’an 271018, China; 2 Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
  • Received:2014-09-18 Revised:2014-12-19 Published:2015-03-12 Published online:2015-01-12
  • Contact: 史春余, E-mail: scyu@sdau.edu.cn, Tel: 0538-8246259

摘要:

选取我国北方薯区主栽的食用型甘薯品种龙薯9号、红香蕉、泰中6号、苏薯8号、遗字138和北京553,于2011—2012年2个生长季在山东农业大学农学试验站进行大田试验,研究不同产量水平甘薯品种光合产物的分配差异及其原因。在甘薯主要生长时期测定茎蔓各部位蔗糖含量和基部茎粗、在块根膨大过程中对功能叶进行13C标记,探索不同品种13C同化物分配特点,同时研究上述项目与收获指数和块根产量的关系。结果表明,高产品种龙薯9号、红香蕉、泰中6号和苏薯8号产块根均在60 t hm–2左右,而中、低产品种遗字138和北京553产块根在50 t hm–2以下。高产品种的收获指数显著高于中、低产品种。在块根膨大前期高产品种的块根成为光合产物的分配中心,而中、低产品种的块根则在块根膨大后期成为分配中心;在块根膨大前、中期,高产品种13C同化物在块根中的分配比例显著高于中、低产品种,即高产品种光合产物由功能叶向块根的转运能力强于中、低产品种。供试品种茎蔓基部的蔗糖含量均高于顶部,且中、低产品种的蔗糖浓度差大于高产品种;随着甘薯生长发育,中、低产品种茎蔓基部增粗速率高于高产品种。相关分析表明,块根产量与收获指数呈极显著正相关(r = 0.98**, 2011; r = 0.93**, 2012);块根13C分配率与块根产量和收获指数均呈显著正相关(0.87*和0.91**, 2011; 0.92**和0.99**, 2012);生长中后期,基部茎粗与块根产量和收获指数均呈显著负相关(–0.78*和–0.83*; –0.88**和–0.95**)。块根成为光合产物分配中心的时间早、光合产物由功能叶向块根的转运能力强是高产品种收获指数显著提高的主要原因,而中、低产品种光合产物由叶片向块根转运能力差的主要原因是块根中光合产物卸载不畅。

关键词: 甘薯, 产量潜力, 光合产物分配, 光合产物运转能力

Abstract:

A field experiment was conducted at agricultural experiment station of Shandong Agricultural University, Tai’an, Shandong Province in two growth seasons of 2011 and 2012. Six typical varieties of edible sweetpotato in North China were used, including Longshu 9, Hongxiangjiao, Taizhong 6, Sushu 8, Yizi 138, and Beijing 553, to study the difference and reason for assimilate distribution among varieties with different yield levels. The distribution characteristics of assimilate was studied by 13C labeling during storage roots development; sucrose content of different stem parts and stem base diameter were measured as well. And the relationship between the above traits and harvest index, tuber root yield was also analyzed. The results showed that the root tuber yield of high-yielding varieties (Longshu 9, Hongxiangjiao, Taizhong 6, and Sushu 8) was about 60 t hm2, whereas that of intermediate and low-yielding varieties (Yizi 138 and Beijing 553) was less than 50 t hm2. And the harvest index of high-yielding varieties was significantly higher than that of intermediate and low-yielding varieties. The root tuber of high-yielding varieties became assimilate distribution center at early bulking stage, while for intermediate and low-yielding varieties that was at late bulking stage; and high-yielding varieties also had significantly higher 13C distribution rate than that of intermediate and low-yielding varieties, indicating that high-yielding varieties had relatively higher ability to transport assimilate from functional leaves to root tubers. Sucrose content of stem base was higher than that of stem top, and the sucrose concentration gradient of intermediate and low-yielding varieties was higher than that of high-yielding varieties. Low-yielding varieties’ stem base thickened faster than high-yielding varieties in the development of sweetpotato. The correlation analysis showed that root tuber yield had significantly positive correlation with harvest index (r = 0.98**, 2011; r = 0.93**, 2012). Root tuber yield and harvest index had significantly positive correlation with 13C distribution rate of root tuber (0.87* and 0.91**, 2011; 0.92** and 0.99**, 2012); they also had significantly negative correlation with stem base diameter during middle and late growth stages (–0.78* and –0.83*; –0.88** and –0.95**). Therefore, high-yielding varieties got higher harvest index mainly due to less time taken by their root tuber to become assimilate distribution center and stronger ability of assimilate transportation from functional leaves to root tubers; and low-yielding varieties got lower abilities of assimilate transportation mainly because assimilate unloading in root tubers was not smoothly.

Key words: Sweetpotato, Yield level, Assimilates distribution, Ability of assimilates transportation

[1]Hazra P, Chattopadhyay A, Karmakar K, Dutta S. Sweetpotato. In: Modern Technology in Vegetable Production. New Delhi: New India Publishing Agency, 2011. pp 358–370



[2]马代夫. 我国甘薯产业发展若干问题的思考. 农业工程技术(农产品加工业), 2013, 11: 21–24



Ma D F. Consideration on development of sweet potato industry in China. Agric Eng Technol (Agric Prod Proc Ind), 2013, 11: 21–24 (in Chinese)



[3]Woolfe J A. Sweet potato, An Untapped Food Resource. Cambridge University Press, UK: Cambridge University Press, 1992



[4]Zhang L M, Wang Q M, Wang Q C. Sweetpotato in China. In: Loebenstein G., Thottappilly G, Eds. The Sweetpotato. Springer, Netherlands, 2009. pp. 325–358



[5]王冬梅, 王建玲, 孙妮娜, 李卫强. 紫甘薯的营养成分及开发利用研究. 安徽农业科学, 2014, 20: 6762–6763



Wang D M, Wang J L, Sun N N, Li W Q. Nutritional component of purple sweet potato and development. J Anhui Agric Sci, 2014, 20: 6762–6763 (in Chinese with English abstract)



[6]Teow C C, Truong V, McFeeters R F, Thompson R L, Pecoto K V, Yencho G C. Antioxidant activities, phenolic and β-carotene contents of sweetpotato genotypes with varying flesh colors. Food Chem, 2007, 103: 829–838



[7]Food and Agricultural Organisation (FAO). FAO Statistics. In: http://apps.fao.org/, 2012



[8]周全卢. 秋甘薯不同类型品种干物质积累特性研究. 西南大学博士学位论文, 重庆, 2007. pp 41–42



Zhou Q L. Research of Dry Matter Accumulating Characters on Autumn Sweet Potato Varieties of Different Types. PhD Dissertation of Southwest University, Chongqing, China, 2005. pp 25–27 (in Chinese with English abstract)



[9]Ainsworth E A, Bush D R. Carbohydrate export from the leaf: a highly regulated process and target to enhance photosynthesis and productivity. Plant Physiol, 2011, 155: 64–69



[10]Turgeon R. The puzzle of phloem pressure. Plant Physiol, 2010, 154: 578–581



[11]Oparka K J. What is phloem unloading. Plant Physiol, 1990, 94: 393–396



[12]Patrick J W. Phloem unloading sieve element unloading and post-sieve element transport. Annu Rev Plant Physiol Plant Mol Biol, 1997, 48: 191–222



[13]Nie P, Wang X, Hu L P, Zhang H Y, Zhang J X, Zhang Z X, Zhang L Y. The predominance of the apoplasmic phloem-unloading pathway is interrupted by a symplasmic pathway during Chinese jujube fruit development. Plant Cell Physiol, 2010, 51: 1007–1018



[14]Viola R, Roberts A G, Haupt S, Gaaaani S, Hancock R D, Marmiroli N, Machray C G, Oparka K J. Tuberization in potato involves a switch from apoplastic to symplastic phloem unloading. Plant Cell Online, 2001, 13: 385–398



[15]史春余, 王振林, 赵秉强, 郭风法, 余松烈. 钾营养对甘薯块根薄壁细胞微结构、14C同化物分配和产量的影响. 植物营养与肥料学报, 2002, 8: 335–339



Shi C Y, Wang Z L, Zhao B Q, Guo F F, Yu S L. Effects of potassium on the parenchyma cell structure of storage root, the distribution of 14C photosynthates and yield in sweet potato. Plant Nut Fert Sci, 2002, 8: 335–339 (in Chinese with English abstract)



[16]李军营. 二氧化碳浓度升高对水稻幼苗叶片生长、蔗糖转运和籽粒灌浆的影响及其机制. 南京农业大学博士学位论文, 江苏南京 2006. p 22



Li J Y. Effects of Elevated CO2 on Leaf Growth, Sucrose Transport and Grain Filling in Rice (Oryza sativa L.) and Their Mechanism. PhD Dissertation of Nanjing Agricultural University, Nanjing, China, 2006. p 22 (in Chinese with English abstract)



[17]杨立明. 甘薯新品种龙薯9号的高产潜力和稳产特性. 山西农业大学学报(自然科学版), 2006, (3): 237–239



Yang L M. The steady yield character and high yield potential of new Sweet Potato variety Longshu 9. J Shanxi Agric Univ (Nat Sci), 2006, (3): 237–239 (in Chinese with English abstract)



[18]张国军, 张华微. 红香蕉甘薯在朝阳地区的引种栽培技术. 现代农业科技, 2013, (3): 48



Zhang G J, Zhang H W. Introducing and cultivating technology of Hong Xiangjiao in Caoyang. Mod Agricl Sci Tech, 2013, (3): 48 (in Chinese)



[19]李明福, 徐宁生, 宋云华, 薛美琼. 甘薯良种“苏薯8号”等在云南玉溪的产量表现. 云南农业科技, 2010, (1): 54–56



Li M F, Xu N S, Song Y H, Xue M Q. Yields of Sweet Potato excellent variety Sushu No. 8 in Yuxi, Yunnan. Yunnan Agric Sic Tech, 2010, (1): 54–56 (in Chinese)



[20]张晓艳, 王丽丽, 刘淑云, 封文杰, 王风云, 朱建华. 不同基因型甘薯品种产量及营养成分的动态变化. 山东农业科学, 2011, (1): 24–28



Zhang X Y, Wang L L, Liu S Y, Feng W J, Wang F Y, Zhu J H. Dynamic changes of yield and nutritional components of different genotypical sweet potato varieties. Shandong Agric Sci, 2011, (1): 24–28 (in Chinese with English abstract)



[21]周小丽, 王忠义, 张志国, 李仁崑. 北京地区甘薯主栽品种遗字138脱毒技术的建立及增产效果分析. 作物杂志, 2012, (6): 127–130



Zhou X L, Wang Z Y, Zhang Z G, Li R K. Virus-free technology and its effect on yield of main varieties Yizi 138 in Beijing. Crops, 2012, (6): 127–130 (in Chinese)



[22]丁玲. 甘薯的茎叶生长与块根膨大规律研究. 江西农业学报, 2006, (2): 60–61



Ding L. Study of rules of stem leaf growth and root tuber bulking of sweet potato. Acta Agric Jiangxi, 2006, (2): 60–61 (in Chinese)

[1] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[2] 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528.
[3] 张思梦, 倪文荣, 吕尊富, 林燕, 林力卓, 钟子毓, 崔鹏, 陆国权. 影响甘薯收获期软腐病发生的指标筛选[J]. 作物学报, 2021, 47(8): 1450-1459.
[4] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
[5] 王翠娟, 柴沙沙, 史春余, 朱红, 谭中鹏, 季杰, 任国博. 铵态氮素促进甘薯块根形成的解剖特征及其IbEXP1基因的表达[J]. 作物学报, 2021, 47(2): 305-319.
[6] 杜祥备, 习敏, 孔令聪, 吴文革, 陈金华, 许有尊, 周永进. 江淮地区稻-麦周年产量差及其与资源利用关系[J]. 作物学报, 2021, 47(2): 351-358.
[7] 马猛, 闫会, 高闰飞, 后猛, 唐维, 王欣, 张允刚, 李强. 紫甘薯SSR标记遗传图谱构建与重要农艺性状QTL定位[J]. 作物学报, 2021, 47(11): 2147-2162.
[8] 黄小芳,毕楚韵,石媛媛,胡韵卓,周丽香,梁才晓,黄碧芳,许明,林世强,陈选阳. 甘薯基因组NBS-LRR类抗病家族基因挖掘与分析[J]. 作物学报, 2020, 46(8): 1195-1207.
[9] 刘永晨,司成成,柳洪鹃,张彬彬,史春余. 改善土壤通气性促进甘薯源库间光合产物运转的原因解析[J]. 作物学报, 2020, 46(3): 462-471.
[10] 陈杉彬, 孙思凡, 聂楠, 杜冰, 何绍贞, 刘庆昌, 翟红. 甘薯IbCAF1基因的克隆及耐盐性、抗旱性鉴定[J]. 作物学报, 2020, 46(12): 1862-1869.
[11] 张欢, 杨乃科, 商丽丽, 高晓茹, 刘庆昌, 翟红, 高少培, 何绍贞. 甘薯抗旱相关基因IbNAC72的克隆与功能分析[J]. 作物学报, 2020, 46(11): 1649-1658.
[12] 姜仲禹, 唐丽雪, 柳洪鹃, 史春余. 不同施钾量条件下甘薯块根形成的内源激素变化及其与块根数量的关系[J]. 作物学报, 2020, 46(11): 1750-1759.
[13] 张海燕, 汪宝卿, 冯向阳, 李广亮, 解备涛, 董顺旭, 段文学, 张立明. 不同时期干旱胁迫对甘薯生长和渗透调节能力的影响[J]. 作物学报, 2020, 46(11): 1760-1770.
[14] 史文卿,张彬彬,柳洪鹃,赵庆鑫,史春余,王新建,司成成. 甘薯块根形成和膨大对土壤紧实度的响应机制及与产量的关系[J]. 作物学报, 2019, 45(5): 755-763.
[15] 张海燕,解备涛,汪宝卿,董顺旭,段文学,张立明. 不同甘薯品种抗旱性评价及耐旱指标筛选[J]. 作物学报, 2019, 45(3): 419-430.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!