欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (03): 432-439.doi: 10.3724/SP.J.1006.2015.00432

• 耕作栽培·生理生化 • 上一篇    下一篇

甘薯源库关系建立、发展和平衡对氮肥用量的响应

宁运旺,马洪波,张辉,汪吉东,许仙菊,张永春*   

  1. 江苏省农业科学院农业资源与环境研究所 / 农业部江苏耕地保育科学观测实验站,江苏南京210014
  • 收稿日期:2014-07-11 修回日期:2014-12-19 出版日期:2015-03-12 网络出版日期:2015-01-12
  • 通讯作者: 张永春, E-mail: yczhang1966@sina.com, Tel: 025-84390242
  • 基金资助:

    本研究由国家现代农业产业技术体系建设专项(CARS-11-B-15), 江苏省农业科技自主创新科技资金[cx(14)2005]和IPNI国际合作项目(JIANGSU-11)共同资助。

Response of SweetpotatoinSource-Sink Relationship Establishment, Expanding, and Balance to Nitrogen Application Rates

NING Yun-Wang,MA Hong-Bo,ZHANG Hui,WANG Ji-Dong,XU Xian-Ju,ZHANG Yong-Chun*   

  1. Institute of Agricultural Resources and Environmental Research, Jiangsu Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Arable Land Conservation (Jiangsu), Ministry of Agriculture, Nanjing 210014, China
  • Received:2014-07-11 Revised:2014-12-19 Published:2015-03-12 Published online:2015-01-12
  • Contact: 张永春, E-mail: yczhang1966@sina.com, Tel: 025-84390242

摘要:

以盆栽、田间微区和田间裂区试验分析不同氮肥用量对苏薯16(半直立株型)和苏薯11(匍匐株型)生长前期(0~30 d)、中期(30~60 d)和后期(60~120 d)根系形态、单株薯数、叶面积指数、茎叶生物量、根生物量和T/R值的影响。结果表明,在全生育期内,施氮对甘薯茎叶生长均有显著促进作用,但对根生长的影响各不相同。生长前期,低量施氮对根系生长和分化有促进作用,而适量和高量施氮则表现显著抑制作用,并使30 d时单株薯数显著降低29.3%~36.6%或1.3~2.0个(P<0.05),但同一甘薯品种、不同施氮处理的单株薯数在生长中期之后又趋于一致。生长中期,适量和过量施氮可显著促进源库规模的发展,并使甘薯茎叶生物量增加量分别显著提高35.5%~48.9%和73.4%~79.8%(P<0.05),叶面积指数迅速达到4左右,而对根生物量增加量无显著影响(P>0.05)。生长后期,施氮过多时(N32处理)茎叶鲜重持续增加,到收获时叶面积指数和蔓薯比分别达4.9~5.6和1.50~1.51,显著高于适量施氮处理时的3.3~3.5和0.58~0.64(P<0.05);施氮过少时(N30处理)则反之,收获时不施氮处理的叶面积指数和蔓薯比分别为1.6~1.9和0.36~0.42,其中叶面积指数显著低于适量施氮处理(P<0.05);不同施氮处理的单个薯重差异越来越大,适量施氮处理的单个薯重(218~345g)显著高于不施氮(181~262g)和过量施氮处理(160~285 g, P<0.05),所以适量施氮处理的最终单株块根产量(1.02~1.20 kg)也高于不施氮处理(0.88~0.91 kg)和过量施氮处理(0.79~0.87 kg, P<0.05)。表明,移栽前一次性基施氮的条件下,不施或少施氮有利于甘薯生长前期源库关系的提早建立,适量或过量施氮有利于甘薯生长中期源库关系的发展,而仅有适量施氮有利于维持甘薯生长后期的源库平衡。

关键词: 甘薯, 氮, 源库关系

Abstract:

The pot, field mini-plot, and field split-plot experiments were carried out to investigate sweetpotato roots morphology(RM), number of tuberous roots per plant(NTR), leaf area index(LAI), shoots biomass, roots biomass and ratio of top to root(T/R-value) at 30, 60, 90, and 120 days after planting(DAP). At the whole growth period (0–120 d), nitrogen application promoted shoots growth, but had different effects on roots growth. At the early growing stage (0–30 d), low nitrogen rate (NR, N21) promoted roots growth and differentiation, but proper NR(N11, N22, N31) and excessive NR(N12, N23, N32) apparently inhibited roots development, causing NTR to decrease by 29.3%–36.6%(or 1.3–2.0 per plant) (P<0.05). The NTR at different nitrogen rates tended to be same in the split-plot experiment after 60 DAP. At the middle growth stage (30–60 d), proper or excessive nitrogen rates were in favor of expansion of sweetpotato source-sink relationship(SSR), enhancing shoots biomass by 35.5%–48.9% and 73.4%–79.8%, respectively(P<0.05), LAI rapidly ran up to four, but had no influence on roots biomass (P>0.05). At the late growth stage (60–120 d), excessive NR sustained shoots biomass growth, LAI and T/R at harvest reached 4.9–5.6 and 1.50–1.51, respectively, which were apparently higher than those (3.3–3.5 and 0.58–0.64) under the proper NR (P<0.05). When no nitrogen application, LAI and T/R at harvest were only 1.6–1.9 and 0.36–0.42, of which LAI was apparently lower than that under the proper NR (P<0.05). At the same time, there was a difference in fresh weight of individual tuberous root(FWITR) under different nitrogen rates. FWITR(218–345 g) under the proper NR was higher than those under no NR(181–262 g) and excessive NR(160–285 g, P<0.05), therefore, the final yield per plant under the proper NR(1.02–1.20 kg) was higher than thatunder no NR(0.88–0.91 kg) and excessive NR(0.79–0.87 kg, P<0.05). It is showed that nitrogen as base fertilizer, its less or no application is favorable for the establishment of SSR, its proper or excessive application delays SSR at early growth stage, its right or excessive application promotes the expandation of SSR at middle growth stage, and only right application would keep SSR balance at late growth stage.

Key words: Sweetpotato, Nitrogen, Source-sink relationship

[1]Hai M R, Kubota F. The effects of drought stress and leaf ageing on leaf photosynthesis and electron transport in photosystem 2 in sweet potato(Ipomoea batatas Lam.) cultivars.Photosynthetica, 2003, 41: 253–258

[2]李明, 傅玉凡, 王大一, 蒲志刚, 吴洁, 谭文芳. 不同肉色甘薯交互嫁接后块根干物质积累研究. 西南农业学报, 2010, 23: 1418–1423

   Li M, Fu Y F, Wang D Y, Pu Z G, Wu J, Tan W F. Accumulation of dry matter in sweetpotato storage roots after reciprocal grafts among five varieties with different fresh color. Sourthwest China J AgricSci, 2010, 23: 1418–1423 (in Chinese with English abstract)

[3]江苏省农业科学院, 山东省农业科学院. 中国甘薯栽培学. 上海科学技术出版社, 1982, pp 47–49

Jiangsu and Shandong Academy of Agricultural Science.Sweet Potato Cultivation in China. Shanghai: Shanghai Science and Technology Press, 1982, pp 47–49(in Chinese)

[4]Kim S H, Mizuno K, Sawada S, Fujimura T. Regulation of tuber formation and ADP-glucose pyrophosphorylase (AGPase) in sweet potato (Ipomoea batatas (L.) Lam.) by nitrate. Plant Growth Regulation, 2002, 37: 207–213

[5]张庆会, 徐步东. 试论甘薯块根的生长机理. 生物学通报, 2002, 37(8):22–23

   Zhang Q H, Xu B D. Discussion on the mechanism of sweetpotato tuber growth. Chin Bull Bot, 2002, 37(8):22–23(in Chinese)

[6]Firon N, LaBonte D, Villordon A, McGregor C, Kfir Y, Pressman E. The Sweetpotato. Chapter 3 Botany and Physiology: Storage Root Formation and Development. Springer Science+Business Media B.V. 2009,pp13–26

[7]戴明宏, 赵久然, 杨国航, 王荣焕, 陈国平. 不同生态区和不同品种玉米的源库关系及碳氮代谢. 中国农业科学, 2011, 44: 1585–1595

   Dai M H, Zhao J R, Yang G H, Wang R H, Chen G P. Source-sink relationship and carbon-nitrogen metabolism of maize in different ecological regions and varieties. SciAgric Sin, 2011, 44: 1585–1595(in Chinese with English abstract)

[8]易镇邪, 王璞, 张红芳, 申丽霞, 刘明, 戴明宏. 氮肥类型与施用量对华北平原夏玉米源库关系的影响. 植物营养与肥料学报, 2006, 12: 294–300

   Yi Z X, Wang P, Zhang H F, Shen L X, Liu M, Dai M H. Effects of type and application rate of nitrogen fertilizer on source-sink relationship in summer maize in North China Plain. Plant NutrFertSci, 2006, 12: 294–300(in Chinese with English abstract)

[9]吉春容, 赵琳, 李世清, 李生秀. 施氮和栽培模式对半湿润农田生态系统冬小麦源特征的影响. 西北农林科技大学学报(自然科学版), 2007, 35(11): 53–59

Ji C R, Zhao L, Li S Q, Li S X. Effect of nitrogen fertilizer and planting modes on the source characteristic of winter wheat in sub-humid farmland ecosystem. J Northwest A&F Univ(Nat SciEdit), 2007, 35(11): 53–59(in Chinese with English abstract)

[10]莫钊文, 李武, 段美洋, 潘圣刚, 田华, 唐湘如. 减氮对华南早晚兼用型水稻源库特性的影响及其机理. 华北农学报, 2013, 28(5): 206–212

Mo Z W, Li W, Duan M Y, Pan S G, Tian H, Tang X R. Effects of reduced nitrogen fertilizer on source and sink characteristics of early/late season rice in Sourth China and their mechanism.ActaAgricBoreali-Sin, 2013, 28: 206–212 (in Chinese with English abstract)

[11]冯跃华, 潘剑, 何腾兵, 刘应春, 王尚有, 赵福胜, 田晋文, 潘兴书, 范乐乐. 不同施氮水平对超级稻源库特性的影响. 中国农学通报, 2010, 26(15): 252–256

Feng Y H, Pan J, He T B, Liu Y C, Wang S Y, Zhao F S, Tian J W, Pan X S, Fan L L. Effect of different fertilizer-N application rate on source-sink characteristics of super hybrid rice.ChinAgricSci Bull, 2010, 26: 252–256 (in Chinese with English abstract)

[12]中谷诚. 甘薯块根的库容:I. 库容的发展对源活力的影响.国外农学: 杂粮作物, 1989, (6):10–14

Zhong G C. Sink capacity of sweetpotato storage roots:I. Effect of development of sink capacity on source potential. Foreign Agric: Coarse Cereal Crops, 1989, (6):10–14 (in Chinese)

[13]Li L, Chao C H. Variation of sweet potatoes with respect to source potentials and sink capacities.Euphytica, 1990, 47: 131–138

[14]Hahn S K. A quantitative approach to source potentials and sink capacities among reciprocal grafts of sweet potato varieties.Crop Sci, 1977, 17:559–562

[15]泽畑秀. 关于甘薯块根膨大特性的研究: II.养分供给量对块根膨大的影响. 国外农学: 杂粮作物, 1990, (5): 21–24

Ze T X. Studies on characteristic of tuber enlargement in sweet potato:II: Effects of nutrient supply on tuber enlargement of sweetpotato. Foreign Agric: Coarse Cereal Crops, 1990, (5): 21–24(in Chinese)

[16]谢一芝, 邱瑞镰, 林长平. 施肥对苏薯2号物质生产及其品质的影响. 江苏农业科学, 1989, (7):7–9

Xie Y Z, Qiu R L, Lin C P. Effects of fertilization on production and quality of sweetpotato Su2. J Jiangsu AgricSci, 1989, (7):7–9(in Chinese)

[17]王留梅, 毛守民, 潘明华, 周利霞. 甘薯叶面积系数田间速方法初探. 中国农学通报, 2001, 17(6): 82

Wang L M, Mao S M, Pan M H, Zhou L X. Field rapid determination of leaf area index of sweet potato. Chin AgricSciBull, 2001, 17(6): 82(in Chinese)

[18]王庆美, 张立明, 王振林. 甘薯内源激素变化与块根形成膨大的关系. 中国农业科学, 2005, 38: 2414–2420

Wang Q M, Zhang L M, Wang Z L. Formation and thickening of tuberous roots in relation to the endogenous hormone concentrations in sweetpotato. SciAgricSin, 2005, 38: 2414–2420(in Chinese with English abstract)

[19]宁运旺, 马洪波, 许仙菊, 汪吉东, 张辉, 许建平, 陈杰, 张永春. 氮磷钾缺乏对甘薯前期生长和养分吸收的影响. 中国农业科学, 2013, 46: 486–495

Ning Y W, Ma H B, Xu X J, Wang J D, Zhang H, Xu J P, Chen J, Zhang Y C. Effects of Deficiency of N, P, or K on Growth traits and nutrient uptakes of sweetpotato in early growing stage.SciAgric Sin, 2013, 46: 486–495(in Chinese with English abstract)

[20]Wilson LA. Stimulation of adventitious bud production in detached sweet potatoleaves by high nitrogen supply.Euphytica. 1973,22:324–326

[21]陈晓光, 李洪民, 张爱君, 史新敏, 唐忠厚, 魏猛, 史春余. 不同氮水平下多效对食用型甘薯光合和淀粉积累的影响. 作物学报, 2012, 38: 1728–1733

Chen X G, Li H M, Zhang A J, Shi X M, Tang Z H, Wei M, Shi C Y. Effect of paclobutrazol under different N-application rates on photosynthesis and starch accumulation in edible sweet potato.ActaAgron Sin, 2012, 38: 1728–1733(in Chinese with English abstract)

[22]陈晓光, 史春余, 李洪民, 张爱君, 史新敏. 氮肥和多效矬对甘薯叶片生理功能和产量的影响. 西南农业学报, 2013, 22(2): 71–75

Chen X G, Shi C Y, Li H M, Zhang A J, Shi X M.Effect of PP333 and N fertilizer on yield and physiological function of sweet potato leaves.ActaAgricBoreali-occident Sin, 2013, 22(2): 71–75(in Chinese with English abstract)

[23]Osaki M, Ueda H, Shinano T, Matsui H, Tadano T. Accumulation of carbon and nitrogen compounds in sweet potato plants grown under different nitrogen application rates. Soil Sci Plant Nutr, 1995, 41:547–555

[24]Ankumah R O, Khan V, Mwamba K, KpomblekouA. The influence of source and timing of nitrogen fertilizers on yield and nitrogen use efficiency of four sweet potato cultivars. Agric, Ecosyst& Environ, 2003, 100: 201–207

[25]Hill W A, Dodo H, Hahn S K, Mulongoy K. Adeyeye S O. Sweet potato root and biomass production with and without nitrogen fertilization. Agron J, 1990, 82: 1120–1122

[1] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[4] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[5] 李鑫格, 高杨, 刘小军, 田永超, 朱艳, 曹卫星, 曹强. 播期播量及施氮量对冬小麦生长及光谱指标的影响[J]. 作物学报, 2022, 48(4): 975-987.
[6] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[7] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[8] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[9] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[10] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[11] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
[12] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[13] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[14] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[15] 张军, 周冬冬, 许轲, 李必忠, 刘忠红, 周年兵, 方书亮, 张永进, 汤洁, 安礼政. 淮北地区麦茬机插优质食味粳稻氮肥减量的精确运筹[J]. 作物学报, 2022, 48(2): 410-422.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!