欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (06): 979-987.doi: 10.3724/SP.J.1006.2015.00979

• 研究简报 • 上一篇    

栽培种花生遗传图谱的构建及主茎高和总分枝数QTL分析

成良强,唐梅,任小平,黄莉,陈伟刚,李振动,周小静,陈玉宁,廖伯寿,姜慧芳*   

  1. 中国农业科学院油料作物研究所 / 农业部油料作物生物学与遗传育种重点实验室,湖北武汉430062
  • 收稿日期:2014-10-27 修回日期:2015-03-19 出版日期:2015-06-12 网络出版日期:2015-04-03
  • 通讯作者: 姜慧芳, E-mail: peanut@oilcrops.com, Tel: 027-86711550
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2011CB109300), 国家自然科学基金项目(31271764, 31371662), 农业部农作物种质资源保护项目(NB2010-2130135-28B), 国家现代农业产业技术体系建设专项(CARS-14-种质资源评价)和山东省农业良种工程(鲁科字[2013]207号)项目资助。

Construction of Genetic Map and QTL Analysis for Mainstem Height and Total Branch Number in Peanut (Arachis hypogaea L.)

CHENG Liang-Qiang,TANG Mei,REN Xiao-Ping,HUANG Li,CHEN Wei-Gang,LI Zhen-Dong,ZHOU Xiao-Jing,CHEN Yu-Ning,LIAO Bo-Shou,JIANG Hui-Fang*   

  1. Oil Crops research institute of Chinese Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
  • Received:2014-10-27 Revised:2015-03-19 Published:2015-06-12 Published online:2015-04-03
  • Contact: 姜慧芳, E-mail: peanut@oilcrops.com, Tel: 027-86711550

摘要:

栽培种花生是异源四倍体,基因组大,构建花生的分子遗传连锁图谱并对相关性状进行QTL定位研究的工作缓慢。本研究以遗传差异大的亲本组配杂交富川大花生×ICG6375构建F2作图群体,采用公开发表的2653SSR引物,构建了一张含有234SSR标记、分布于20个连锁群的栽培种花生遗传图谱。该图谱覆盖基因组的长度为1683.43 cM,各个连锁群长度在36.11~131.48 cM之间,每个连锁群的标记数在6~15个之间,标记间的平均距离为7.19 cM。结合F3在湖北武汉和阳逻环境下的主茎高和总分枝数鉴定结果,应用WinQTLCart 2.5软件采用复合区间作图法进行了QTL定位和遗传效应分析。共检测到17个与主茎高和总分枝数相关的QTL位点,贡献率在0.10%~10.22%之间,分布于8个连锁群上。综合分析武汉和阳逻环境的鉴定结果,获得重复一致的与主茎高相关的6QTL,其中qMHA061.1qMHA062.1位于连锁群LG06TC1A2~AHGS0153标记区间,贡献率为5.49%~8.95%qMHA061.2qMHA062.2位于LG06AHGS1375~PM377标记区间,贡献率为2.93%~5.83%qMHA092.2qMHA091.1位于连锁群LG09GM2839~EM87标记区间,贡献率为0.53%~9.43%

关键词: 栽培种花生, 遗传图谱, 主茎高, 总分枝数, QTL

Abstract:

Peanut is an allotetraploid crop with a large genome. The construction of genetic linkage map and QTL mapping of related traits has little progress for peanut. In the present study, a genetic map consisting of 20 linkage groups was constructed with 234 SSR markers based on 2653 published SSR markers by using the F2 population derived from the cross between Fuchuan Dahuasheng and ICG6375. The genetic map covers 1683.43 cM, and the length of each linkage group varies from 36.11 to 131.48 cM, the number of markers in each linkage group varies from 6 to 15, with an average distance of 7.19 cM. Combining with the data of main stem height and number of total branches of F3 population in the environments of Wuhan and Yangluo, we performed QTL mapping and genetic effects analysis of QTLs by software WinQTLCart 2.5 using CIM (Composite Interval Mapping) method. As a result, 17 QTLs related to main stem height and number of total branches on eight linkage groups were detected with contribution percentage of 0.10%–10.22%. Comparing the QTLs detected in the environments of Wuhan and Yangluo, qMHA061.1 and qMHA062.1 were in the same linkage region of markers TC1A2–AHGS0153 of linkage group LG06 with contribution percentage of 5.49%–8.95%, qMHA061.2 and qMHA062.2 were between the markers AHGS1375 and PM377 on linkage group LG06 with contribution ratio of 2.93%–5.83%, qMHA092.2 and qMHA091.1 were in the same linkage region of the markers GM2839–EM87 in linkage group LG09 with contribution percentage of 0.53%–9.43%. The QTLs repeatedly detected are important for molecular breeding of peanut.

Key words: Cultivated peanut, Genetic mapping, Mainstem height, Number of total branches, QTL

[1]廖伯寿. 我国花生科研与产业发展现状及对策. 中国农业信息, 2008, (5): 18–20

Liao B S. Development status and strategies of peanut research and industry development status. China Agric Inform, 2008, (5): 18–20 (in Chinese)

[2]王后苗, 黄家权, 雷永, 晏立英, 王圣玉, 姜慧芳, 任小平, 娄庆仁, 廖伯寿. 花生种子白藜芦醇含量与黄曲霉产毒抗性的关系. 作物学报, 2012, 38: 1875–1883

Wang H M, Huang J Q, Lei Y, Yan L Y, Wang S Y, Jiang H F, Ren X P, Lou Q R, Liao B S. Relationship of resveratrol content and resistance to aflatoxin accumulation caused by Aspergillus flavus in peanut seeds. Acta Agron Sin, 2012, 38: 1875−1883 (in Chinese with English abstract)

[3]Halward T, Stalker H. T, Kochert G. Development of an RFLP linkage map in diploid peanut species. Theor Appl Genet, 1993, 87: 379–384

[4]Milla S, Milla S R, Isleib T G, Stalker H T. Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers. Genome, 2005, 48: 1–11

[5]Moretzsohn M C, Leoi L K, Proite P, Guimaraes M, Leal-Bertioli S C M, Valls J F M, Grattapaglia D. A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theor Appl Genet, 2005, 111: 1060–1071

[6]Foncéka D, Hodo-Abalo T, Ronan R, Mbaye N S, Ousmane N. Genetic mapping of wild introgressions into cultivated peanut: a way toward enlarging the genetic basis of a recent allotetraploid. BMC Plant Biol, 2009, 9: 130

[7]Varshney R, Moretzsohn M C, Vadez V, Krishnamurthy L, Aruna R, Nigam S N, Moss B J, Seetha K, Ravi K, He G, Knapp S J, Hoisington D A. The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theor Appl Genet, 2009, 118: 729–739

[8]Ravi K, Vadez V, Zsobe S, Mir R R, Guo Y, Nigam S N, Growda M V C, Radhalrishncm T, Bertioli D J, Knapp S J, Varshney R V. Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theor Appl Genet, 2011, 122: 1119–1132

[9]Khedikar Y, Khedikar Y P, Gowda M V C, Sarvamangala C, Patgar K V, Upadhyaya H D, Varshney R. K. A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.). Theor Appl Genet, 2010, 121: 971–984

[10]Shirasawa K, Koilkonda P, Koilkonda P, Aoki K, Hirakawa H, Tabata S, Watanabe M, Hasegawa M, Kiyoshima H, Suzuki S, Kuwata C, Naito Y, Kuboyama T, Nakaya A, Sasamoto S, Watanabe A, Kato M, Kawashima K, Kishida Y, Kohara M, Kurabayashi A, Takahashi C, Tsuruoka H, Wada T, Isobe S. In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biol, 2012, 12: 80

[11]Wang H, Pandey M K, Qiao L X, Qin H D, Culbreath A K , He G H, Varshney R K, Guo B Z. Genetic mapping and QTL analysis for disease resistance using F2 and F5 generation-based genetic maps derived from Tifrunner × GT-C20 in peanut (Arachis hypogaea L.). Plant Genome, 2013, 6: 1–28

[12]张新友. 栽培花生产量品质和抗病性的遗传分析与QTL定位研究. 浙江大学研究生院博士学位论文, 浙江杭州, 2010. pp 76–77

Zhang X Y. Inheritance of Main Traits Related to Yield Quality And Disease Resistance and Their QTLs Mapping in Peanut (Arachis hypogaea L.). PhD Dissertation of Graduate School of Zhejiang University, Hangzhou, China, 2010. pp 76–77 (in Chinese with English abstract)

[13]赖明芳, 曾彦, 漆燕, 夏友霖, 崔富华. 花生主要农艺性状的配合力分析. 中国油料作物学报, 2007, 29: 148–151

Lai M F, Zeng Y, Qi Y, Xia Y L, Cui F H. Analysis on the genetic characteristics of major economic traits in peanut. Chin J Crop Sci, 2007, 29: 148–151 (in Chinese with English abstract)

[14]殷冬梅, 尚明照, 崔党群. 花生主要农艺性状的遗传模型分析. 中国农学通报, 2006, 22(7): 261–265

Yin D M, Shang M Z, Cui D Q. Studies on genetic analysis of major agronomic characters in peanut. Chin Agric Sci Bull, 2006, 22(7): 261–265 (in Chinese with English abstract)

[15]姜慧芳, 段迺雄, 任小平. 花生种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. pp 65–66

Jiang H F, Duan N X, Ren X P. Descriptors and Data Standard for Peanut (Arachis spp). Beijing: China Agriculture Publishers, 2006. pp 65–66

[16]Hong Y B, Chen X P, Liang X Q, Liang X Q, Liu H Y, Zhou G Y, Li S X, Wen S J, Horbrook C C, Guo B Z. A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome. BMC Plant Biol, 2010, 10: 17

[17]Qin H D, Feng S P, Chen C, Guo Y F, Knapp S, Culbreath A, He G H, Wang M L, Zhang X Y, Horlbrook C C, Ozias-Akins P, Guo B Z. An integrated genetic linkage map of cultivated peanut (Arachis hypogaea L.) constructed from two RIL populations. Theor Appl Genet, 2012, 124: 653–664

[18]Hopkins M S A, Casa A M, Wang T, Mitchell S E. Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut. Crop Sci, 1999, 39: 1243–1247

[19]Ferguson M E, Burow M D, Schulze S R, Bramel P J, Paterson A H, Kresovich S, Mitchell S. Microsatellite identification and characterization in peanut (A. hypogaea L.). Theor Appl Genet, 2004, 108: 1064–1070

[20]Palmieri D A, Bechara M D, Curi R A, Gimenes M A, Lopes C R. Novel polymorphic microsatellite markers in section Caulorrhizae (Arachis, Fabaceae). Mol Ecol Notes, 2005, 5: 77–79

[21]Palmieri. D A, Hoshino A A, Bravo J P, Lopes, C R, Gimenes, M A. Isolation and characterization of microsatellite loci from the forage species Arachis pintoi (Genus, Arachis). Mol Ecol Notes, 2002, 2: 551–553

[22]He G H, Meng R H, Newman M, Cao G Q, Pittman R N, Prakash C S. Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L.). BMC Plant Biol, 2003, 3: 3

[23]Moretzsohn M C, Hopkins M S, Mitchell S E, Kresovich S, Valls J F M, Ferreira M F. Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. BMC Plant Biol, 2004, 4: 11

[24]Luo M, Dang P, Guo B Z, He G, Holbrook C C, Bausher M G, Lee K D. Generation of expressed sequence tag (ESTs) for gene discovery and marker development in cultivated peanut. Crop Sci, 2005, 45: 346–353

[25]Mace E S, Varshney R K, Mahalakshmi V. In silico development of simple sequence repeat markers within the aeschynomenoid, dalbergoid and genistoid clades of the Leguminosae family and their transferability to Arachis hypogaea, groundnut. Plant Sci, 2007, 174: 51–60

[26]Proite K, Leal-Bertioli S C, Bertioli D J. ESTs from a wild Arachis species for gene discovery and marker development. BMC Plant Biol, 2007, 7: 7

[27]Gimenes M A, Hosino A A, Barbosa A A G, Palmieri D A, Lopes C R. Characterization and transferability of microsatellite markers of cultivated peanut (Arachis hypogaea L.). BMC Plant Biol, 2007, 7: 9

[28]Wang C T, Yang X D, Chen D Y, Yu L S, Liu G Z, Tang Y Y, Xu J Z. Isolation of simple sequence repeats from groundnut. Electr J Biotech, 2007, 10: 473–480

[29]Cuc L M, Mace E S, Grouch J H, Quang V D, Long T D, Varshney R K. Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (Arachis hypogaea L.). BMC Plant Biol, 2008, 8: 55

[30]Guo B Z , Chen X P, Hong Y B, Liang X Q, Dang P, Brenneman T, Holbrook C, Culbreath A. Analysis of gene expression profiles in leaf tissues of cultivated peanuts and development of EST-SSR markers and gene discovery. Intl J Plant Genom, 2009

[31]Nagy E, Chu Y, Guo Y F, Khananl S, Tang S S, Li Y, Dong W B, Timer P, Taylor C, Ozias-Akins P, Holbrook C C, Beilinson V, Nielsen N C, Stalker H T, Knapp S J. Recombination is suppressed in an alien introgression in peanut harbouring Rma, a dominant root-knot nematode resistance gene. Mol Breed, 2010, 26: 357–370

[32]Gautami B, Ravi K, M L, Narasu M L, Hoisington D A, Varshney R K. Novel set of groundnut SSR markers for germplasm analysis and inter-specific transferability. Int J Integr Biol, 2009, 7: 100–106

[33]Pandey M K, Gautami B, Jayakumar T, Sriswathi M, Upadhyaya H D, Gowda M V C, Radhakrishan T, Bertioli D J, Knapp S J, Cook D R, Knapp S J, Cook D R, Varshney R K. Highly informative genic and genomic SSR markers to facilitate molecular breeding in cultivated groundnut (Arachis hypogaea). Plant Breed, 2011, 131: 139–147

[34]洪彦彬, 梁炫强, 陈小平, 刘海燕, 周桂元, 李少雄, 温世杰. 花生栽培种SSR遗传图谱的构建. 作物学报, 2009, 35: 395–402

Hong Y B, Liang X Q, Chen X P, Liu H Y, Zhou G Y, Li S X, Wen S J, Construction of genetic linkage map in peanut (Arachis hypogaea L.) cultivars. Acta Agron Sin, 2009, 35: 395–402 (in Chinese with English abstract)

[35]Shirasawa K, Bertioli D J, Varshney R K, Moretzsohn M C, Leal-Bertiol S C M i, Thudi M, Pandey M K, Rami J-F, Fonce´ka D, Gowda M V C, Qin H D, Guo B Z, Hong Y B, Liang X Q, Hirakawa H, Tabata S, Isobe S. Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes. DNA Res, 2013, 20: 173–184

[36]Xu Y, Zhu L, Xiao J, Huang N, McMouch S R. Chromosomal regions associated with segregation distortion of molecular markers in F2 , backcross, doubled haploid and recombinant inbred populations in rice (Oryza sativa L.). Mol Gen Genet, 1997, 253: 535–545

[37]Zhao B, Deng Q M, Zhang Q J, Li J Q, Ye S P, Liang Y S, Peng Y, Li P. Analysis of segregation distortion of molecular markers in F2 population of rice. Acta Genet Sin, 2006, 33: 449–457

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[3] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[4] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[5] 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480.
[6] 罗兰, 雷丽霞, 刘进, 张瑞华, 金桂秀, 崔迪, 黎毛毛, 马小定, 赵正武, 韩龙植. 利用东乡普通野生稻染色体片段置换系定位产量相关性状QTL[J]. 作物学报, 2021, 47(7): 1391-1401.
[7] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[8] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[9] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[10] 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461.
[11] 王瑞莉, 王刘艳, 雷维, 吴家怡, 史红松, 李晨阳, 唐章林, 李加纳, 周清元, 崔翠. 结合RNA-seq分析和QTL定位筛选甘蓝型油菜萌发期与铝毒胁迫相关的候选基因[J]. 作物学报, 2021, 47(12): 2407-2422.
[12] 吕国锋, 别同德, 王慧, 赵仁慧, 范金平, 张伯桥, 吴素兰, 王玲, 汪尊杰, 高德荣. 长江下游麦区新育成品种(系) 3种主要病害的抗性鉴定及抗病基因/ QTL的分子检测[J]. 作物学报, 2021, 47(12): 2335-2347.
[13] 马猛, 闫会, 高闰飞, 后猛, 唐维, 王欣, 张允刚, 李强. 紫甘薯SSR标记遗传图谱构建与重要农艺性状QTL定位[J]. 作物学报, 2021, 47(11): 2147-2162.
[14] 孟鑫浩, 张靖男, 崔顺立, Charles Y.Chen, 穆国俊, 侯名语, 杨鑫雷, 刘立峰. 花生荚果与种子相关性状QTL定位及与环境互作分析[J]. 作物学报, 2021, 47(10): 1874-1890.
[15] 李竟才, 王强林, 宋威武, 黄维, 肖桂林, 吴承金, 顾钦, 宋波涛. 基于侯选基因标记的四倍体马铃薯休眠QTL关联分析[J]. 作物学报, 2020, 46(9): 1380-1387.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!