欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (07): 1127-1135.doi: 10.3724/SP.J.1006.2015.01127

• 研究简报 • 上一篇    下一篇

水分胁迫下甘蔗差异表达基因筛选及激素相关基因分析

李长宁,谢金兰,王维赞,梁强,李毅杰,董文斌,刘晓燕,杨丽涛*,李杨瑞*   

  1. 中国农业科学院甘蔗研究中心 / 广西农业科学院甘蔗研究所 / 农业部广西甘蔗生物技术与遗传改良重点实验室 / 广西甘蔗遗传改良重点实验室,广西南宁530007
  • 收稿日期:2014-12-08 修回日期:2015-05-04 出版日期:2015-07-12 网络出版日期:2015-05-15
  • 基金资助:

    本研究由国家高技术研究计划(863计划)项目 (2013AA102604), 科技部国际合作项目(2013DFA31600), 广西农科院团队项目(桂农科2011YT01), 广西八桂学者、特聘专家专项经费, 广西自然科学基金项目(2014GXNSFBA118085)和广西农科院基本科研业务专项(桂农科2014YD01)资助。

Screening of Differentially Expressed Genes and Analysis of Plant Hormones Related Genes under Water Stress in Sugarcane

LI Chang-Ning,XIE Jin-Lan,WANG Wei-Zan,LIANG Qiang,LI Yi-Jie,DONG Wen-Bin,LIU Xiao-Yan,YANG Li-Tao*,LI Yang-Rui*   

  1. Sugarcane Research Center, Chinese Academy of Agricultural Sciences / Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences / Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture / Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
  • Received:2014-12-08 Revised:2015-05-04 Published:2015-07-12 Published online:2015-05-15

摘要:

甘蔗是经济和环境上日益重要的C4作物,干旱在全球范围内显著限制甘蔗产量。了解甘蔗对水分胁迫反应的分子机制将有助于甘蔗抗旱性的分子遗传改良。利用基因芯片技术分析水分胁迫下甘蔗叶片的15 593个基因的表达谱,结果表明,中、重度胁迫下的差异表达基因数量分别为300个和853个,中度胁迫中差异基因以上调表达为主,重度胁迫中下调表达占多数注释结果显示,差异表达基因分子功能主要为结合、载体和催化活性,主要参与代谢、细胞和生物调控等生物过程。此外,功能未明确的假定蛋白和无匹配信息的基因序列仍占据注释结果的相当一部分,表明还有大量的基因尚待发掘。在水分胁迫下,甘蔗内源ABAIAA含量显著上升而GA含量显著受到抑制。以参与生物进程分类,对植物激素相关基因进行筛选并分析,发现激素响应表达基因代谢途径具有多样性,显示了激素代谢网络的交叉性与复杂性。挑选9个差异表达程度不同的基因进行实时荧光定量PCR检测,表明芯片数据具有良好的重复性。

关键词: 甘蔗, 水分胁迫, 基因芯片, 植物激素, 基因表达谱

Abstract:

Sugarcane is an increasingly economically and environmentally important C4 crop. Water stress limits enormously sugarcane productivity worldwide, and understanding the molecular mechanisms for sugarcane stress responses will be useful for sugarcane improvement by genetic manipulation. To investigate the transcriptome changes in response to water stress, we used microarrays to profile expressions of 15 593 genes in sugarcane exposed to drought. The results indicated that 300 and 853 differentially expressed genes were detected under moderate and severe water stresses, respectively. The expression of differentially expressed genes treated with moderate water stress was mainly up-regulated, however that treated with severe water stress was mainly down-regulated. To further characterize these genes, we used Gene Ontology (GO) for their annotation, the results showed that differentially expressed genes possessed the functions of binding, transporter, molecular transducer and catalytic activities and were involved in metabolic, biological regulation and cellular processes. Besides, hypothetical protein and no match annotated results were found to fill a large part of those genes, indicating that effective approach should be adopted to discover novel genes in sugarcane genomics. Water stress resulted in an increase in ABA and IAA contents but a depression in GA content. Classified by biological process, 46 plant hormone related genes were selected, further annotation analysis showed that the metabolic pathways of some plant hormone responsive genes were diverse or had crosstalk with each other, indicating the intersectionality and complexity of plant hormone signaling pathway. Additionally, the relative expressions of nine selected genes were validated by quantitative real time PCR (qRT-PCR), further confirming the reliability of microarray results.

Key words: Sugarcane, Water stress, Microarray, Plant hormone, Gene expression profiles

[1]Vasantha S, Alarmelu S, Hemaprabha G, Shanthi R M. Evaluation of promising sugarcane genotypes for drought. Sugar Tech, 2005, 7: 82–83



[2]Duan B L, Yang Y Q, Lu Y W, Helena K, Frank B, Li C Y. Interactions between water deficits, ABA, and provenances in Picea asperata. J Exp Bot, 2007, 58: 3025–3036



[3]Huang D, Wu W, Abrams S R, Cutler A J. The relationship of drought related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot, 2008, 59: 2991–2997



[4]Durbak A, Yao H, McSteen P. Hormone signaling in plant development. Curr Opin Plant Biol, 2012, 15: 92–96



[5]Havlova M, Dobrev P I, Motyka V, Storchová H, Libus J, Dobrá J, Malbeck J, Gaudinová A, Vanková R. The role of cytokinins in responses to water deficit in tobacco plants over-expressing trans-zeatin O-glucosyltransferase under 35S or SAG12 promoters. Plant Cell Environ, 2008, 31: 341–353



[6]Woodward A W. Receptor for auxin. Plant Cell, 2005, 17: 2425–2429



[7]Siddikee M A, Glick B R, Chauhan P S, Yim W J, Sa T. Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiol Biochem, 2011, 49: 427–434



[8]Lopez R, Larrigaudière C, Girona J, Behboudian M H, Marsal J. Fruit thinning in ‘Conference’ pear grown under deficit irrigation: Implications for fruit quality at harvest and after cold storage. Sci Hort, 2011, 129: 64–70



[9]Hassine A B, Lutts S. Differential responses of saltbush Atriplex halimus L. exposed to salinity and water stress in relation to senescing hormones abscisic acid and ethylene. J Plant Physiol, 2010, 167: 1448–1456



[10]Rock C D, Sun X. Crosstalk between ABA and auxin signaling pathways in roots of Arabidopsis thaliana (L.) Heynh. Planta, 2005, 222: 98–106



[11]Szepesi A, Csiszár J, Gémes K,  Horváth E, Horváth F, Simon M L, Tari I. Salicylic acid improves acclimation to salt stress by stimulating abscisic aldehyde oxidase activity and abscisic acid accumulation, and increases Na+ content in leaves without toxicity symptoms in Solanum lycopersicum L. J Plant Physiol, 2009, 166: 914–925



[12]Depuydt S, Hardtke C S. Hormone signalling crosstalk in plant growth regulation. Curr Biol, 2011, 21: R365–R373



[13]Shan X, Yan J, Xie D. Comparison of phytohormone signaling mechanisms. Curr Opin Plant Biol, 2012, 15: 84–91



[14]Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K. Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Plant Biol, 2006, 17: 113–122



[15]Valliyodan B, Nguyen H T. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol, 2006, 9: 189–195



[16]阙友雄, 许莉萍, 林剑伟, 徐景升, 张积森, 张木清, 陈如凯. 利用斑茅cDNA芯片研究甘蔗受黑穗病菌侵染后基因差异表达. 作物学报, 2009, 35: 940–945



Que Y X, Xu L P, Lin J W, Xu J S, Zhang J S, Zhang M Q, Chen R K. Application of E. arundinaceus cDNA microarray in the study of differentially expressed genes induced by U. scitaminea. Acta Agron Sin, 2009, 35: 940–945 (in Chinese with English abstract)



[17]官梅, 李栒, 官春云. 利用基因芯片技术研究甘蓝型油菜油酸合成中差异表达基因. 作物学报, 2010, 36: 968–978



Guan M, Li X, Guan C Y. Differentially expressed genes in oleic acid synthesis of Brassica napus by detected gene chip. Acta Agron Sin, 2010, 36: 968–978 (in Chinese with English abstract)



[18]李龙云, 于霁雯, 翟红红, 黄双领, 李兴丽, 张红卫, 张金发. 利用基因芯片技术筛选棉纤维伸长相关基因. 作物学报, 2011, 37: 95–104



Li L Y, Yu J W, Zhai H H, Huang S L, Li X L, Zhang H W, Zhang J F, Yu S X. Identification of fiber length-related genes using cotton oligonucleotide microarrays. Acta Agron Sin, 2011, 37: 95–104 (in Chinese with English abstract)



[19]Lorenz W W, Alba R, Yu Y S, Bordeaux J M, Simões M, Dean J F D. Microarray analysis and scale-free gene networks identify candidate regulators in drought-stressed roots of loblolly pine (P. taeda L.). BMC Genom, 2011, 11: 264



[20]Mahmud S A, Hirasawa T, Furusawa C, Yoshikawa K, Shimizu H. Understanding the mechanism of heat stress tolerance caused by high trehalose accumulation in Saccharomyces cerevisiae using DNA microarray. J Biosci Biol, 2012, 113: 526–528



[21]Li Q, Li P, Sun L, Wang Y P, Ji K, Sun Y F, Dai S J, Chen P, Duan C R, Leng P. Expression analysis of β-glucosidase genes that regulate abscisic acid homeostasis during watermelon (Citrullus lanatus) development and under stress conditions. J Plant Physiol, 2012, 169: 78–85



[22]Li C N, Srivastava M K, Nong Q, Yang L T, Li Y R. Molecular cloning and characterization of SoNCED, a novel gene encoding 9-cis-epoxycarotenoid dioxygenase from sugarcane (Saccharum of?cinarum L.). Genes Genom, 2013, 35: 101–109



[23]Livak K J, Schmittgen T D. Analysis of relative gene expression data using Real-time quantitative PCR and the 2−ΔΔCt method. Methods, 2001, 25: 402–408



[24]Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signal transduction in water-stress response. Plant Physiol, 1997, 115: 327–334



[25]Bray E A. Plant responses to water deficit. Trans Plant Sci, 1997, 2: 48–54



[26]Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta, 2003, 218: 1–14



[27]Bartels D, Sunkars R. Drought and salt tolerance in plants. Crit Rev Plant Sci, 2005, 24: 23–58



[28]Bernacchia G, Furini A. Biochemical and molecular responses to water stress in resurrection plants. Physiol Plant, 2004, 121: 175–181



[29]Shao H B, Guo Q J, Chu L, Zhao X N, Su Z L, Hu Y C, Cheng J F. Understanding molecular mechanism of higher plant plasticity under abiotic stress. Colloids Surf B Biointerfaces, 2007, 54: 37–45



[30]Peleg Z, Blumwald E. Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol, 2011, 41: 290–295



[31]Pandey D M, Goswami C L, Kumar B. Physiological effects of plant hormones in cotton under drought. Biol Plant, 2003, 47: 535–540



[32]Perales L, Arbona V, Gómez-Cadenas A, Cornejo M J, Sanz A. A relationship between tolerance to dehydration of rice cell lines and ability for ABA synthesis under stress. Plant Physiol Biochem, 2005, 43: 786–792



[33]Zhao M R, Han Y Y, Feng Y N, Li F, Wang W. Expansins are involved in cell growth mediated by abscisic acid and indole-3-acetic acid under drought stress in wheat. Plant Cell Rep, 2012, 31: 671–685



[34]Ashraf M Y, Azhar N, Hussain M. Indole acetic acid (IAA) induced changes in growth, relative water contents and gas exchange attributes of barley (Hordeum vulgare L.) grown under water stress. Plant Growth Regul, 2006, 50: 85–90



[35]Bhyan S B, Minami A, Kaneko Y, Suzuki S, Arakawa K, Sakata Y, Takezawa D. Cold acclimation in the moss Physcomitrella patens involves abscisic acid-dependent signaling. J Plant Physiol, 2012, 169: 137–145



[36]Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science, 2009, 324: 1064–1068



[37]Park S Y, Fung P, Nishimura N, Jensen D R, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow T F, Alfred S E, Bonetta D, Finkelstein R, Provart N J, Desveaux D, Rodriguez P L, McCourt P, Zhu J K, Schroeder J I, Volkman B F, Cutler S R. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science, 2009, 324: 1068–1071



[38]Kobayashi Y, Murata M, Minami H, Yamamoto S, Kagaya Y, Hobo T, Yamamoto A, Hattori T. Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant J, 2005, 44: 939–949



[39]Fujita Y, Yoshida T, Yamaguchi-Shinozaki K. Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiol Plant, 2013, 147: 15–27



[40]Vahisalu T, Kollist H, Wang Y F, Nishimura N, Chan W Y, Valerio G, Lamminmäki A, Brosché M, Moldau H, Desikan R, et al. SLAC1 is required for plant guard cell S-type anion channel function in stomatal signaling. Nature, 2008, 452: 487–491



[41]Lee S C, Lan W Z, Buchanan B B, Luan S. A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proc Natl Acad Sci USA, 2009, 106: 21419–21424



[42]Urano K, Maruyama K, Ogata Y, Morishita Y, Takeda M, Sakurai N, Suzuki H, Saito K, Shibata D, Kobayashi M, Yamaguchi Shinozaki K, Shinozaki K. Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics. Plant J, 2009, 57: 1065–1078



[43]Cutler S R, Rodriguez P L, Finkelstein R R, Abrams S R. Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol, 2010, 61: 651–679

[1] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[2] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[3] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[4] 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2022, 48(2): 332-341.
[5] 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2021, 47(8): 1522-1530.
[6] 傅华英, 张婷, 彭文静, 段瑶瑶, 许哲昕, 林艺华, 高三基. 甘蔗新品种(系)苗期白条病人工接种抗性鉴定与评价[J]. 作物学报, 2021, 47(8): 1531-1539.
[7] 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析[J]. 作物学报, 2021, 47(7): 1275-1296.
[8] 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137.
[9] 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析[J]. 作物学报, 2021, 47(5): 882-893.
[10] 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586.
[11] 张荣跃, 王晓燕, 杨昆, 单红丽, 仓晓燕, 李婕, 王长秘, 尹炯, 罗志明, 李文凤, 黄应昆. 甘蔗新品种及主栽品种对褐锈病抗性与Bru1基因分子检测[J]. 作物学报, 2021, 47(2): 376-382.
[12] 仓晓燕, 夏红明, 李文凤, 王晓燕, 单红丽, 王长秘, 李婕, 张荣跃, 黄应昆. 甘蔗优良品种(系)对黑穗病的抗性评价[J]. 作物学报, 2021, 47(11): 2290-2296.
[13] 张海, 程光远, 杨宗桃, 王彤, 刘淑娴, 商贺阳, 赵贺, 徐景升. 甘蔗ScCRT1基因克隆及其应答SCMV侵染分子机制的研究[J]. 作物学报, 2021, 47(1): 94-103.
[14] 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857.
[15] 罗俊,林兆里,李诗燕,阙友雄,张才芳,杨仔奇,姚坤存,冯景芳,陈建峰,张华. 不同土壤改良措施对机械压实酸化蔗地土壤理化性质及微生物群落结构的影响[J]. 作物学报, 2020, 46(4): 596-613.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!