作物学报 ›› 2015, Vol. 41 ›› Issue (08): 1237-1245.doi: 10.3724/SP.J.1006.2015.01237
沈天垚,杜祥备,杨洪坤,张宇晓,郑宇飞,周治国,陈兵林*
SHEN Tian-Yao,DU Xiang-Bei,YANG Hong-Kun,ZHANG Yu-Xiao,ZHENG Yu-Fei,ZHOU Zhi-Guo,CHEN Bing-Lin*
摘要:
研究麦棉两熟种植模式影响棉仁脂肪及蛋白质代谢机制,可为我国麦棉两熟棉区在稳定棉花产量和品质的基础上提高棉籽品质提供理论依据。试验于2012年和2013年在江苏省大丰市稻麦原种场进行,以泗杂3号(中晚熟品种)和中棉所50(早熟品种)棉花品种为材料,以单作棉为对照(CK),设置棉花生产上常用的麦套移栽棉(IC)、麦后移栽棉(TC)和麦后直播棉(DC)麦棉种植模式,研究麦棉两熟不同种植模式对棉仁脂肪和蛋白质的累积动态、关键酶活性及其相互关系的影响。结果表明,(1)两熟棉棉仁脂肪含量皆较CK低,IC、TC和DC呈依次下降的趋势;IC和TC棉仁蛋白质含量皆高于CK,DC低于CK;中棉所50棉仁脂肪和蛋白质含量均略高于泗杂3号。(2)两熟棉棉仁磷脂酸磷酸酯酶(PPase)和6-磷酸葡萄糖脱氢酶(G6PDH)活性低于CK,丙酮酸羧化酶(PEPC)活性高于CK;IC、TC棉仁谷氨酰胺合成酶(GS)和谷氨酸合酶(GOGAT)活性高于CK,DC低于CK;中棉所50棉仁具有较高的PPase、G6PDH、GS和GOGAT活性,PEPC活性稍低于泗杂3号。(3)棉仁最终脂肪含量与棉仁代谢过程中PPase、G6PDH活性呈极显著正相关,与PEPC活性呈极显著负相关;棉仁最终蛋白质含量与G6PDH活性及GS、GOGAT活性分别呈显著和极显著正相关。总之,在我国麦棉两熟棉区选择应用中熟棉花品种、麦套移栽方式可以在稳定棉花产量和品质的基础上提高棉籽品质。
[1]Zhang L, van der Werf W, Zhang S P, Li B, Spiertz J H J. Growth, yield and quality of wheat and cotton in relay strip intercropping systems. Field Crops Res, 2007, 103: 178–188[2]Dai J L, Dong H Z. Intensive cotton farming technologies in China: achievements, challenges and countermeasures. Field Crops Res, 2014, 155: 99–110[3]Doman D C, Walker J C, Trelease R N, Trelease B D, Moore. Metabolism of carbohydrate and lipid reserves in geminated cotton seed. Planta, 1982, 155: 502–510[4]Gotmare V, Singh P, Mayee C D, Deshpande V, Bhagat C. Genetic variability for seed oil content and seed index in some wild species and perennial races of cotton. Plant Breed, 2004, 123: 207–208[5]周治国, 孟亚利, 沈煜清, 施培, 贾志宽. 品种对3:1式移栽棉棉铃发育的影响. 西北农业大学学报, 1998, 26(2): 46–51Zhou Z G, Meng Y L, Shen Y Q, Shi P, Jia Z K. Effects of varieties on the cotton boll development of seedling transplant cotton with 3:1 cotton-wheat double cropping model. Acta Univ Agric Boreali-occidentalis, 1998, 26(2): 46–51 (in Chinese with English abstract)[6]Tuner J H, Ramey H H, Worley S. Influence of environment on seed quality of four cotton cultivars. Crop Sci, 1976, 16: 407–409[7]周治国, 许玉璋, 许萱. 温度对棉籽发育的影响. 西北农业大学学报, 1992, 20(2): 73–78Zhou Z G, Xu Y Z, Xu X. Effects of temperature upon the development of cotton seeds. Acta Univ Agric Boreali-Occident, 1992, 20(2): 73–78 (in Chinese)[8]周治国, 孟亚利, 施培, 沈煜清, 贾志宽. 种植方式和播(移栽)期对麦(夏)棉两熟棉铃发育的影响. 作物学报, 2000, 26: 467–472Zhou Z G, Meng Y L, Shi P, Shen Y Q, Jia Z K. Effects of planting ways and sowing(or transplant)-date on the boll development of the summer cotton in wheat-summer cotton double cropping. Acta Agron Sin, 2000, 26: 467–472 (in Chinese with English abstract)[9]李文峰, 孟亚利, 陈兵林, 王友华, 周治国. 气象因子对棉籽脂肪和蛋白质含量的影响. 生态学报, 2009, 29: 1832–1839Li W F, Meng Y L, Chen B L, Wang Y H, Zhou Z G. Effects of climatic factors on fat and total protein contents in cottonseeds. Acta Ecol Sin, 2009, 29: 1832–1839 (in Chinese with English abstract)[10]Zhao D, Oosterhuis D. Cotton responses to shade at different growth stages: nonstructural carbohydrate composition. Crop Sci, 1998, 38: 1196–1203[11]朱丽丽, 周治国, 赵文青, 孟亚利, 陈兵林, 吕丰娟. 种植密度对棉籽生物量和脂肪与蛋白质含量的影响. 作物学报, 2010, 36: 2162–2169Zhu L L, Zhou Z G, Zhao W Q, Meng Y L, Chen B L, Lü F J. Effects of pant densities on cottonseed biomass, fat and protein contents. Acta Agron Sin, 2010, 36: 2162–2169 (in Chinese with English abstract)[12]Leffer H R. Influence of nitrogen levels on reproductive growth and seed quality in cotton. Field Crops Res, 1985, 10: 219–227[13]Sawan Z M, Saeb A, Hafez A E B, Alkassas A R. Cottonseed, protein, oil yields and oil properties as affected by nitrogen fertilization and foliar application of potassium and a plant growth retardant. World J Agric Sci, 2006, 2: 56–65[14]唐湘如, 官春云. 施氮对油菜几种酶活性的影响及其与产量和品质的关系. 中国油料作物学报, 2001, 23(4): 33–38Tang X R, Guan C Y. Effect of N application on activities of several enzymes and trait of yield and quality in rapeseed cultivar Xiangyou. Chin J Oil Crop Sci, 2001, 23(4): 33–38 (in Chinese with English abstract)[15]Sebei K, Ouerghi Z, Kallel H, Boukhchina S. Evolution of phosphoenolpyruvate carboxylase activity and lipid content during seed maturation of two spring rapeseed cultivars ( Brassica napus L.). Comptes Rendus Biol, 2006, 329: 719–725[16]Jourdren C, Barret P, Brunel D, Delourme R, Renard M. Specific molecular marker of the genes controlling linolenic acid content in rapeseed. Theor Appl Genet, 1996, 93: 512–518[17]徐一兰, 官春云, 谭太龙. 油菜种子形成中含油量与其合成相关酶活性的变化及其相关性. 作物学报, 2008, 34: 1854–1857Xu Y L, Guan C Y, Tan T L, Yu L X. Changes of oil content and oil biosynthesis-related enzymes activities and their correlation during seed formation in Brassica napus. Acta Agron Sin, 2008, 34: 1854–1857 (in Chinese with English abstract)[18]Conde C, Delrot S, Geros H. Physiological, biochemical and molecular changes occurring during olive development and ripening. J Plant Physiol, 2008, 165: 1545–1562[19]Simonovi? A D, Anderson M D. Effect of chilling and acclimation on the activity of glutamine synthetase isoforms in maize seedlings. Arch Biol Sci, 2007, 59: 177–185[20]王月福, 于振文, 李尚霞, 余松烈. 氮素营养水平对冬小麦氮代谢关键酶活性变化和籽粒蛋白质含量的影响. 作物学报, 2002, 28: 743–748Wang Y F, Yu Z W, Li S X, Yu S L. Effect of nitrogen nutrition on the change of key enzyme activity during the nitrogen metabolism and kernel protein content in winter wheat. Acta Agron Sin, 2002, 28: 743–748 (in Chinese with English abstract)[21]王小纯, 熊淑萍, 马新明, 张娟娟, 王志强. 不同形态氮素对专用型小麦花后氮代谢关键酶活性及籽粒蛋白质含量的影响. 生态学报, 2005, 25: 802–807Wang X C, Xiong S P, Ma X M, Zhang J J, Wang Z Q. Effects of different nitrogen forms on key enzyme activity involved in nitrogen metabolism and grain protein content in speciality wheat cultivars. Acta Ecol Sin, 2005, 25: 802–807 (in Chinese with English abstract)[22]Luque de Castro M D, Garc??a-Ayuso L E. Soxhlet extraction of solid materials: an outdated technique with a promising innovative future. Anal Chim Acta, 1998, 369: 1–10[23]Moser S B, Feil B, Jampatong B, Stamp P. Effects of pre-anthesis drought, nitrogen fertilizer rate, and variety on grain yield, yield components, and harvest index of tropical maize. Agric Water Manag, 2005, 81: 41–58[24]施教耐, 吴敏贤, 查静娟. 植物磷酸烯醇式丙酮酸羧化酶的研究I. PEP羧化酶同工酶的分离和变构特性的比较. 植物生理与分子生物学学报, 1979, 5: 225–234Shi J N, Wu M X, Cha J J. Studies on plant phosphoenolpyruvate carboxylase I. separation and properties of PEP carboxylase isoenzymes. Acta Phytophysiol Sin, 1979, 5: 225–234 (in Chinese with English abstract)[25]Li X, Wang L, Ruan Y. Developmental and molecular physiological evidence for the role of phosphoenolpyruvate carboxylase in rapid cotton fibre elongation. J Exp Bot, 2010, 61: 87–95[26]Nemoto Y, Sasakuma T. Specific expression of glucose-6-phosphate dehydrogenase (G6PDH) gene by salt stress in wheat (Triticum aestivum L.). Plant Sci, 2000, 158: 53–60[27]Sawan Z M. Applied methods for studying the relationship between climatic factors and cotton production. Agric Sci, 2013, 4: 37–54[28]Du X B, Chen B L, Shen T Y, Zhang Y X, Zhou Z G. Effect of cropping system on radiation use efficiency in double-cropped wheat-cotton. Field Crops Res, 2015, 170: 21–31[29]陈美丽. 棉仁粗脂肪和蛋白质累积的生态基础与模拟模型研究. 南京农业大学博士学位论文, 江苏南京, 2014. pp 64–66Chen M L. Study on the ecological base and simulative model of cotton embryo oil and protein accumulation. PhD Dissertation of Nanjing Agricultural University, 2014. pp 64–66 (in Chinese with English abstract)[30]0Zhang L, Van der Werf W, Zhang S P, Li B G, Spiertz J H J. Light interception and utilization in relay intercrops of wheat and cotton. Field Crops Res, 2008, 107: 29–42[31]潘丽娟, 迟晓元, 陈娜, 陈明娜, 王通, 王冕, 杨珍, 禹山林. 花生PEPC基因反义表达载体构建及对花生的遗传转化. 花生学报, 2013, 42(2): 9–13Pan L J, Chi X Y, Chen N, Chen M N, Wang T, Wang M, Yang Z, Yu S L. Construction of the antisense expression vector for peanut PEPC gene and its genetic transformation on peanut. J Peanut Sci, 2013, 42(2): 9–13 (in Chinese with English abstract)[32]Bellaloui N, Turley R B. Effects of fuzzless cottonseed phenotype on cottonseed nutrient composition in near isogenic cotton (Gossypium hirsutum L.) mutant lines under well-watered and water stress conditions. Front Plant Sci, 2013, 4: 1–13[33]李建敏, 王振林, 尹燕枰, 高荣岐, 李圣福, 闫素辉, 于安玲. 不同蛋白质含量小麦品种籽粒形成期氮代谢及相关酶活性的比较. 中国农业科学, 2009, 42: 3078–3086Li J M, Wang Z L, Yin Y P, Gao R Q, Li S F, Yan S H, Yu A L. Comparison of nitrogen metabolism and activities of the related enzymes during grain filling stage among wheat cultivars differing in protein content. Sci Agric Sin, 2009, 42: 3078–3086 (in Chinese with English abstract) |
[1] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[2] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
[3] | 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711. |
[4] | 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778. |
[5] | 陈云, 刘昆, 张宏路, 李思宇, 张亚军, 韦佳利, 张耗, 顾骏飞, 刘立军, 杨建昌. 机插密度和穗肥减量对优质食味水稻品种籽粒淀粉合成的影响[J]. 作物学报, 2021, 47(8): 1540-1550. |
[6] | 黄冰艳, 孙子淇, 刘华, 房元瑾, 石磊, 苗利娟, 张毛宁, 张忠信, 徐静, 张梦圆, 董文召, 张新友. 花生巢式群体的脂肪含量遗传分析[J]. 作物学报, 2021, 47(6): 1100-1108. |
[7] | 鲁庚,唐鑫,陆俊杏,李丹,胡秋芸,胡田,张涛. 紫苏二酰基甘油酰基转移酶2基因克隆与功能研究[J]. 作物学报, 2020, 46(8): 1283-1290. |
[8] | 刘培勋,马小飞,万洪深,郑建敏,罗江陶,蒲宗君. 两个不同籽粒硬度小麦的比较蛋白组学分析[J]. 作物学报, 2020, 46(8): 1275-1282. |
[9] | 郭建斌,黄莉,刘念,罗怀勇,周小静,陈伟刚,吴贝,淮东欣,任小平,姜慧芳. 利用RIL群体创制低山嵛酸花生新种质[J]. 作物学报, 2020, 46(5): 661-667. |
[10] | 马金姣,兰金苹,张彤,陈悦,郭亚璐,刘玉晴,燕高伟,魏健,窦世娟,杨明,李莉云,刘国振. 过表达OsMPK17激酶蛋白质增强了水稻的耐旱性[J]. 作物学报, 2020, 46(01): 20-30. |
[11] | 时丽洁,蒋枞璁,王方梅,杨平,冯宗云. 大麦蛋白质二硫键异构酶基因家族的鉴定与表达分析[J]. 作物学报, 2019, 45(9): 1365-1374. |
[12] | 陈影,张晟瑞,王岚,王连铮,李斌,孙君明. 野生和栽培大豆种质油脂组成特点及其与演化的关系[J]. 作物学报, 2019, 45(7): 1038-1049. |
[13] | 侯智红,吴艳,程群,董利东,芦思佳,南海洋,甘卓然,刘宝辉. 利用CRISPR/Cas9技术创制大豆高油酸突变系[J]. 作物学报, 2019, 45(6): 839-847. |
[14] | 郭建斌,吴贝,陈伟刚,黄莉,陈玉宁,周小静,罗怀勇,刘念,任小平,姜慧芳. 花生品种主要脂肪酸含量在不同生态区的稳定性[J]. 作物学报, 2019, 45(5): 676-682. |
[15] | 黄冰艳,齐飞艳,孙子淇,苗利娟,房元瑾,郑峥,石磊,张忠信,刘华,董文召,汤丰收,张新友. 以分子标记辅助连续回交快速提高花生品种油酸含量及对其后代农艺性状的评价[J]. 作物学报, 2019, 45(4): 546-555. |
|