[1] Van Arkel J, Sévenier R, Hakkert J C, Bouwmeester H J, Koops A J, van der Meer I M. Tailor-made fructan synthesis in plants: a review. Carbohydr Polym, 2013, 93: 48–56
[2] Hendry G A, Wallace R K. The origin, distribution, and evolutionary significance of fructans. In: Suzuki M, Chatterton N J, eds. Science and Technology of Fructans, Boca Raton, Florida, USA: The Chemical Rubber Company Press, 1993. pp 119–139
[3] Wiemken A, Frehner M, Keller F, Wagner W. Fructan metabolism, enzymology and compartmentation: current topics in plant biochemistry and physiology. In: Proceedings of the Plant Biochemistry and Physiology Symposium. Columbia, USA: University of Missouri, 1986. pp 17–37
[4] Hincha D K, Livingston D R, Premakumar R, Zuther E, Obel N, Cacela C, Heyer A G. Fructans from oat and rye: composition and effects on membrane stability during drying. Bioch Biophys Acta, 2007, 1768: 1611–1619
[5] Bie X M, Wang K, She M Y, Du L, Zhang S X, Li J R, Gao X, Lin Z S, Ye X G. Combinational transformation of three wheat genes encoding fructan biosynthesis enzymes confers increased fructan content and tolerance to abiotic stresses in tobacco. Plant Cell Rep, 2012, 31: 2229–2238
[6] Ritsema T, Joling J, Smeekens S. Patterns of fructan synthesized by onion fructan:fructan 6G-fructosyltransferase expressed in tobacco BY2 cells-is fructan:fructan 1-fructosyltransferase needed in onion? New Phytol, 2003, 160: 61–67
[7] Sprenger N, Bortlik K, Brandt A, Boller T, Wiemken A. Purification, cloning, and functional expression of sucrose:fructan 6-fructosyltransferase, a key enzyme of fructan synthesis in barley. Proc Natl Acad Sci USA, 1995, 92: 11652–11656
[8] Wei J Z, Chatterton N J. Fructan biosynthesis and fructosyltransferase evolution: expression of the 6-SFT (sucrose:fructan 6-fructosyltransferase) gene in crested wheatgrass (Agropyron cristatum). J Plant Physiol, 2001, 158: 1203–1213
[9] Kawakami A, Yoshida M. Molecular characterization of sucrose:sucrose 1-fructosyltransferase and sucrose:fructan 6-fructosyltransferase associated with fructan accumulation in winter wheat during cold hardening. Biosci Biotech Biochem, 2002, 66: 2297–2305
[10] Tamura K I, Kawakami A, Sanada Y, Tase K, Komatsu T, Yoshida M. Cloning and functional analysis of a fructosyltransferase cDNA for synthesis of highly polymerized levans in timothy (Phleum pratense L.). J Exp Bot, 2009, 60: 893–905
[11] Del Viso F, Puebla A F, Fusari C M, Casabuono A C, Couto A S, Pontis H G, Hopp H E, Heinz R A. Molecular characterization of a putative sucrose:fructan 6-fructosyltransferase (6-SFT) of the cold-resistant Patagonian grass Bromus pictus associated with fructan accumulation under low temperatures. Plant & Cell Physiol, 2009, 50: 489–503
[12] He X L, Chen Z Z, Wang J W, Li W X, Zhao J X, Wu J, Wang Z H, Chen X H. A sucrose:fructan-6-fructosyltransferase (6-SFT) gene from Psathyrostachys huashanica confers abiotic stress tolerance in tobacco. Gene, 2015, 570: 239–247
[13] 高翔. 小麦族植物果聚糖合成酶基因克隆及功能验证. 中国农业科学院博士学位论文, 北京, 2010
Gao X. Cloning and Functional Analysis of Genes Encoding Fructan Biosynthesis Enzymes in Triticeae Plants. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2010 (in Chinese with English abstract)
[14] Del Viso F, Casabuono A C, Couto A S, Hopp H E, Puebla A F, Heinz R A. Functional characterization of a sucrose:fructan 6-fructosyltransferase of the cold-resistant grass Bromus pictus by heterelogous expression in Pichia pastoris and Nicotiana tabacum and its involvement in freezing tolerance. J Plant Physiol, 2011, 168: 493–499
[15] Li H J, Yang A F, Zhang X C, Gao F, Zhang J R. Improving freezing tolerance of transgenic tobacco expressing sucrose:sucrose 1-fructosyltransferase gene from Lactuca sativa. Plant Cell Tissue Organ Cult, 2007, 89: 37–48
[16] Wei J Z, Jerry Chatterton N, Larson S R. Expression of sucrose:fructan 6-fructosyltransferase (6-SFT) and myoinositol 1-phosphate synthase (MIPS) genes in barley (Hordeum vulgare) leaves. J Plant Physiol, 2001, 158: 635-643
[17] Tamura K, Sanada Y, Tase K, Kawakami A, Yoshida M, Yamada T. Comparative study of transgenic Brachypodium distachyon expressing sucrose:fructan 6-fructosyltransferases from wheat and timothy grass with different enzymatic properties. Planta, 2014, 239: 783–792
[18] Knipp G, Honermeier B. Effect of water stress on proline accumulation of genetically modified potatoes (Solanum tuberosum L.) generating fructans. J Plant Physiol, 2006, 163: 392–397
[19] Ruelland E, Vaultier M, Zachowski A, Hurry V. Chapter 2 cold signalling and cold acclimation in plants. Adv Bot Res, 2009, 49: 35–150
[20] Szabados L, Savouré A. Proline: a multifunctional amino acid. Trends Plant Sci, 2010, 15: 89–97
[21] Schroeven L, Lammens W, Kawakami A, Yoshida M, Van Laere A, Van den Ende W. Creating S-type characteristics in the F-type enzyme fructan:fructan 1-fructosyltransferase of Triticum aestivum L. J Exp Bot, 2009, 60: 3687–3696
[22] Chatterton N J, Harrison P A, Bennett J H, Asay K H. Carbohydrate partitioning in 185 accessions of Gramineae grown under warm and cool temperatures. J Plant Physiol, 1989, 134: 169–179
[23] Chatterton N J, Harrison P A, Thornley W R, Bennett J H. Structure of fructan oligomers in cheatgrass (Bromus tectorum L.). New Phytol, 1993, 124: 389–396
[24] Mcguire P E, Dvorak J. High salt-tolerance potential in wheatgrasses. Crop Sci, 1981, 21: 702–705
[25] Pilon-Smits E, Ebskamp M, Paul M J, Jeuken M, Weisbeek P J, Smeekens S. Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol, 1995, 107: 125–130
[26] Heyer A G, Wendenburg R. Gene cloning and functional characterization by heterologous expression of the fructosyltransferase of Aspergillus sydowi IAM 2544. Appl Environ Microbiol, 2001, 67: 363–370
[27] Chen H, Nelson R S, Sherwood J L. Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection. Biotechniques, 1994, 16: 664–668
[28] Schuler M A, Zielinski R E. Transformation of leaf discs with Agrobacterium. In: Gelvin S B, Schilperoort R A, Verma D P S, eds. Methods in Plant Molecular Biology. San Diego: Academic Press, 1989. pp 145–156
[29] Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning (Third Edn). New York: Cold Spring Harbor Laboratory Press, 1989
[30] Fales F W. The assimilation and degradation of carbohydrates by yeast cells. J Biol Chem, 1951, 193: 113–124
[31] Bates L S, Waldren R P, Teare I D. Rapid determination of free proline for water-stress studies. Plant and Soil, 1973, 39: 205–207
[32] Lasseur B, Schroeven L, Lammens W, Le Roy K, Spangenberg G, Manduzio H, Vergauwen R, Lothier J, Prud' Homme M P, Van den Ende W. Transforming a fructan:fructan 6G-fructosyltransferase from perennial ryegrass into a sucrose:sucrose 1-fructosyltransferase. Plant Physiol, 2009, 149: 327–339
[33] 岳爱琴, 李昂, 毛新国, 昌小平, 李润植, 贾继增, 景蕊莲. 小麦果聚糖合成酶基因6-SFT-A单核苷酸多态性分析及其定位. 中国农业科学, 2011, 44: 2216–2224
Yue A Q, Li A, Mao X G, Chang X P, Li R Z, Jia J Z, Jing R L. Single nucleotide polymorphism and mapping of 6-SFT-A gene responsible for fructan biosynthesis in common wheat. Sci Agric Sin, 2011, 44: 2216–2224 (in Chinese with English abstract)
[34] Gao X, She M Y, Yin G X, Yu Y, Qiao W H, Du L P, Ye X G. Cloning and characterization of genes coding for fructan biosynthesis enzymes (FBEs) in triticeae plants. Agric Sci China, 2010, 9: 313–324
[35] 李淑洁, 李静雯, 张正英. Ta6-SFT在烟草中的逆境诱导型表达及抗旱性. 作物学报, 2014, 40: 994–1001
Li S J,Li J W,Zhang Z Y. Expression of Ta6-SFT Gene in tobacco induced by drought stress. Acta Agron Sin, 2014, 40: 994–1001 (in Chinese with English abstract)
[36] 文明, 卜利伟, 罗紫韵, 王佳伟, 董芬, 黄雪松. 大蒜蔗糖﹕蔗糖1-果糖基转移酶(1-SST)的酶学特征. 中国农业科学, 2015, 48: 334–342
Wen M, Bu L W, Luo Z Y, Wang J W, Dong F, Huang X S. Characteristics of sucrose:sucrose 1-fructosyltransferase in garlic. Sci Agric Sin, 2015, 48: 334–342 (in Chinese with English abstract)
[37] Tamura K, Sanada Y, Tase K, Yoshida M. Fructan metabolism and expression of genes coding fructan metabolic enzymes during cold acclimation and overwintering in timothy (Phleum pratense). J Plant Physiol, 2014, 171: 951–958
[38] 许欢欢, 康健, 梁明祥. 植物果聚糖的代谢途径及其在植物抗逆中的功能研究进展. 植物学报, 2014, 49: 209–220
Xu H H, Kang J, Liang M X. Research advances in the metabolism of fructan in plant stress resistance. Chin Bull Bot, 2014, 49: 209–220 (in Chinese with English abstract)
[39] Venkateswarlu B, Shanker A K, Shanker C, Maheswari M. Crop Stress and its Management: Perspectives and Strategies. Springer Netherlands, 2012 |