欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (03): 399-406.doi: 10.3724/SP.J.1006.2016.00399

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

青稞脂质转运蛋白基因blt4.9的克隆及其对非生物胁迫的响应

姚晓华,吴昆仑*   

  1. 1 青海省农林科学院 / 青海省青稞遗传育种重点实验室 / 青海省高原作物种质资源创新与利用国家重点实验室培育基地, 青海西宁 810016
  • 收稿日期:2015-05-29 修回日期:2015-11-20 出版日期:2016-03-12 网络出版日期:2015-12-18
  • 通讯作者: 吴昆仑, E-mail: wklqaaf@163.com, Tel: 13997276769
  • 基金资助:

    本研究由国家自然科学基金项目(31160284)和国家现代农业产业技术体系建设专项(CARS-05)资助。

Isolation of blt4.9 Gene Encoding LTP Protein in Hulless Barley and Its Re-sponse to Abiotic Stresses

YAO Xiao-Hua,WU Kun-Lun*   

  1. Qinghai Academy of Agriculture and Forestry Sciences / Qinghai Provincial Key Laboratory of Hulless Barley Genetics and Breeding / State Key Laboratory Breeding Base for Innovation and Utilization of Plateau Crop Germplasm, Xining 810016, China
  • Received:2015-05-29 Revised:2015-11-20 Published:2016-03-12 Published online:2015-12-18
  • Contact: 吴昆仑, E-mail: wklqaaf@163.com, Tel: 13997276769
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31160284) and the Special Program of Modern Agro-industry Technology System (CARS-05).

摘要:

为了解脂质转运蛋白基因在青稞中的功能, 以青稞品种昆仑12为材料, 利用同源克隆得到青稞blt4.9基因序列(GenBank登录号为KU170187), 该基因的cDNA序列全长720 bp, 开放阅读框长348 bp, 编码115个氨基酸残基, 相对分子质量为11.2 kD, 理论等电点9.04, 不稳定系数为28.41, 是一个稳定的蛋白质。blt4.9编码的蛋白绝大多数属于疏水区, 没有较大的亲水区。序列比对显示, 该基因与大麦blt4.9基因编码蛋白的同源性最高(98.3%)。Real-time PCR分析结果显示, blt4.9基因在20%~30% PEG-6000、4℃以及50 mmol L-1 ABA处理后表达量显著增加, 且在抗逆性强的青稞品种(旱地紫)中的表达量高于在抗逆性弱的品种(大麻)中, 推测该基因与青稞的抗逆性有关。该研究结果为利用青稞脂质转运蛋白基因改良青稞抗逆性奠定了基础。

关键词: 青稞, blt4.9基因, 克隆, 非生物胁迫, 基因表达量

Abstract:

Higher plant lipid transfer protein (LTP) is a class of small molecular weight alkaline single protein that can transfer phospholipids between biomembrane and form the biomembrane in cells. The objective of this study was to understand the function of LTP gene in hulless barley (Hordeum vulgare L. var. nudum Hook. f.). The cDNA sequence of the LTP gene, blt4.9 (GenBank accession number KU170187), was cloned from hulless barley variety Kunlun 12. The full length of blt4.9 cDNA is 720 bp including 348 bp of open reading frame and encodes 115 amino acids. The encoding product is a stable protein with a molecular weight of 11.2 kD, theoretical pI of 9.04, and instability coefficient of 28.41. This protein is rich in Gly, Ala, Leu, and Val amino acids excluding Trp, Glu, and Phe and similar to proteins encoded by other LTP genes. Sequence alignment indicated high simila­rity (98.3%) of protein encoded by blt4.9 from hulless barley and barley (Hordeum vulgare L.). The Real-time PCR assay showed that blt4.9 was up-regulated by 20–30% PEG-6000, 4ºC and 50 mmol L-1 ABA and the expression level was higher in the most tolerant variety Handizi than in the most susceptible variety Dama, indicating a possible relationship between stress tolerance and blt4.9 in hulless barley. These results provide basic information in the utilization of LTP genes to improve hulless barley tolerance to abiotic stresses.

Key words: Hulless barley, blt4.9, Isolation of gene, Abiotic stresses, Gene expression level

[1] 郭本兆. 青海经济植物志. 西宁: 青海人民出版社, 1987
Guo B Z. Economic Plant Flora of Qinghai. Xining: Qinghai People’s Publishing House, 1987 (in Chinese)
[2] 臧靖巍, 阚建全, 陈宗道, 赵国华. 青稞的成分研究及其应用现状. 中国食品添加剂, 2004, (4): 43–46
Zang J W, Kan J Q, Chen Z D, Zhao G H. Applications of barley study on its components. China Food Additives, 2004, (4): 43–46 (in Chinese with English abstract)
[3] Kader J C. Lipid-transfer proteins in plants. Annu Rev Plant Physiol Plant Mol Biol, 1996, 47: 627–654
[4] Yubero-Serrano E M, Moyano E, Medina - Escobar N, Munoz- Blanco J, Caballero J L. Identification of a strawberry gene en-coding a non-specific lipid transfer protein that responds to ABA, wounding and cold stress. J Exp Bot, 2003, 54: 1865–1877
[5] Hsu C Y, Creeeh R G, Johnie J N, Ma D P. Analysis of promoter activity of cotton lipid transfer protein gene LTP6 in transgenic tobacco plants. Plant Sci, 1999, 143: 63–70
[6] Tobias B D, Dansen Jan W, Fred S W, Ronald J W, Arie H, Theodorus W G, Karel W W. High affinity binding of very long chain fatty acyl CoA esters to the peroxisomal nonspecific lipid transfer protein (sterol carrier protein). Biochem J, 1999, 339: 193–199
[7] Wu G, Robertson A J, Liu X, Zheng P, Wilen R W, Nesbitt N T. A lipid transfer protein gene BG-14 is differentially regulated by abiotic stress, ABA, anisomycin, and sphingosine in bromegrass (Bromus inermis). Plant Physiol, 2004, 161: 449–458
[8] Jung S H, Lee J Y, Lee D H. Use of SAGE technology to reveal changes in gene expression in Arabidopsis leaves undergoing cold stress. Plant Mol Biol, 2003, 52: 553–567
[9] Hincha Dirk K. Cryoprotectin: a plant lipid-transfer protein homologue that stabilizes membranes during freezing. In: Phi-losophical transactions of the Royal Society of London. Series B, Biological Sciences, 2002. pp 909–915
[10] Dunn M A, White A J, Vural S, Hughes M A. Identification of promoter elements in a low-temperature-responsive gene (blt4.9) from barley (Hordeum vulgare L.). Plant Mol Biol, 1998, 38: 551–564
[11] Hughes M A, Durm M A. The molecular biology of plant accli-mation to low temperature. J Exp Bot, 1996, 47: 291–305
[12] Dunn M A, Goddard N J, Zhang L, Pearce R S, Hughes M A. Low-temperature-responsive barley genes have different control mechanisms. Plant Mol Biol, 1994, 24: 879–888
[13] Pfaffl M W. A new mathematical model for relative quantification in real-time RT-PCR. Nucl Acids Res, 2001, 4: 29–45
[14] Thomashow M F. Arabidopsis thaliana as a model for studying mechanisms of plant cold tolerance. In: Meyerowitz E, Somer-ville C, eds. Arabidopsis. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1994. pp 807–834
[15] 何涛, 贾敬芬. 青稞hbltl4.2基因的克隆及功能分析. 作物学报, 2009, 35: 295–300
He T, Jia J F. Cloning and function analysis of hblt14.2 gene in highland barley (Hordeum vulagare L. var. nudum Hook. f.). Acta Agron Sin, 2009, 35: 295–300 (in Chinese with English abstract)
[16] 李长生, 赵传志, 李爱芹, 李兴圃, 赵光敬, 王兴军. 植物脂质转运蛋白的研究. 山东农业科学, 2009, (8): 15–17
Li C S, Zhao C Z, Li A Q, Li X P, Zhao G J, Wang X J. Study of plant transfer proteins. Shandong Agric Sci, 2009, (8): 15–17 (in Chinese with English abstract)
[17] 郭晋艳, 郑晓瑜, 邹翠霞. 李秋莉. 植物非生物胁迫诱导启动子顺式元件及转录因子研究进展. 生物技术通报, 2011, (4): 16–18
Guo J Y, Zheng X Y, Zou C X, Li Q L. Research progress of cis-elements of abiotic stress inducible promoters and associated transcription factors. Biotechnol Bull, 2011, (4): 16–18 (in Chi-nese with English abstract)
[18] 邓晓青, 姚晓华, 吴昆仑, 迟德钊. 青稞LTP蛋白基因blt14.2的克隆及其在低温下的表达. 中国农业大学学报, 2012, 17(2): 18–24
Deng X Q, Yao X H, Wu K L, Chi D Z. Isolation of a blt14.2 gene encoding LTP protein of hulless barley and its expression in low temperature. J China Agric Univ, 2012, 17(2): 18–24 (in Chinese with English abstract)
[19] White A J, Dunn A M, Brown K, Hughes M A. Comparative analysis of genomic sequence and expression of a lipid transfer protein gene family in winter barley. J Exp Bot, 1994, 45: 1885–1892
[20] 王艇, 苏应娟, 刘良式. 植物低温诱导蛋白和低温诱导基因的表达调控. 武汉植物学研究, 1997, 15: 80–90
Wang T, Su Y J, Liu L S. Plant low-temperature-induced protein and regulation of the expression of low-temperature-induced gene. J Wuhan Bot Res, 1997, 15: 80–90 (in Chinese with English ab-stract)
[21] Steponkus P L, Uemura M, Joseph R A, Gilmous S J, Thomashow M F. Mode of action of the CoR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc Natl Acad Sci USA, 1998, 95: 14570–14575
[22] 邓江明, 简令成. 植物抗冻机理研究新进展: 抗冻基因表达及其功能. 植物学通报, 2001, 18: 521–530
Deng J M, Jian L C. Advances of studies on plant freez-ing-tolerance mechanism: freezing tolerance gene expression and its function. Chin Bull Bot, 2001, 18: 521–530 (in Chinese with English abstract)
[23] Hughes M A, Dunn M A, Pearce R S, White A J, Zhang L. An abscisic-acid-responsive, low temperature barley gene has ho-mology with a maize phospholipid transfer protein. Plant Cell & Environ, 1992, 15: 861–865
[24] Soufleri I A, Vergnolle C, Miginiac E, Kader J C. Germina-tion-specific lipid transfer protein cDNA in Brassica napus L. Planta, 1996, 199: 229–237
[25] Liu K H, Lin T Y. Cloning and characterization of two novel lipid transfer protein I genes in Vigna radiate. DNA Seq, 2003, 14: 420-426
[26] 李倩, 王景一, 毛新国, 李昂, 高丽锋, 刘惠民, 景蕊莲. 小麦脂质转运蛋白基因TaLTP克隆及功能分析. 作物学报, 2015, 41: 673–682
Li Q, Wang J Y, Mao X G, Li A, Gao L F, Liu H M, Jing R L. Cloning and functional analysis of lipid transfer protein gene TaLTP in wheat. Acta Agron Sin, 2015, 41: 673–682 (in Chinese with English abstract)
 

[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 王兴荣, 李玥, 张彦军, 李永生, 汪军成, 徐银萍, 祁旭升. 青稞种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2022, 48(5): 1279-1287.
[4] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[5] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[6] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[7] 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634.
[8] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[9] 余国武, 青芸, 何珊, 黄玉碧. 玉米SSIIb蛋白多克隆抗体的制备及其应用[J]. 作物学报, 2022, 48(1): 259-264.
[10] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
[11] 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258.
[12] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[13] 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649.
[14] 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415.
[15] 李京琳, 李佳林, 李新鹏, 安保光, 曾翔, 吴永忠, 黄培劲, 龙湍. 水稻ptc1隐性核不育系的创制及其配合力分析[J]. 作物学报, 2021, 47(11): 2173-2183.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!