欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (06): 795-802.doi: 10.3724/SP.J.1006.2016.00795

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦全基因组NBS类R基因分析及2AL染色体NBS-SSR特异标记开发

乔麟轶1,2,常建忠4,郭慧娟2,高建刚5,郑军3,*,畅志坚1,2,*   

  1. 1山西大学研究生院, 山西太原 030006; 2山西省农业科学院作物科学研究所 / 作物遗传与分子改良山西省重点实验室, 山西太原030031; 3山西省农业科学院小麦研究所, 山西临汾 041000; 4山西省农业科学院旱地农业研究中心, 山西太原030031; 5北京市农林科学院杂交小麦工程技术研究中心, 北京 100097
  • 收稿日期:2015-10-20 修回日期:2016-03-14 出版日期:2016-06-12 网络出版日期:2016-03-21
  • 通讯作者: 畅志坚, E-mail: wrczj@126.com; 郑军, E-mail: zhengjsxaas@126.com
  • 基金资助:

    本研究由国家自然科学基金项目(31171839, 31401385), 山西省青年基金项目(2015021145), 山西省农业攻关项目(20150311001-1, 20150311001-5), 山西省农业科学院攻关项目(15YGG01)和北京市农林科学院青年基金项目(QNJJ201428)资助。

Genome-Wide Analysis of TaNBS Resistance Genes and Development of Chromosome 2AL-specific NBS-SSR Markers in Wheat

QIAO Lin-Yi1,2,CHANG Jian-Zhong4,GUO Hui-Juan2,GAO Jian-Gang5,ZHENG Jun3,*,CHANG Zhi-Jian1,2,*   

  1. 1 Graduate School of Shanxi University, Taiyuan 030006, China; 2 Institute of Crop Science, Shanxi Academy of Agricultural Sciences / Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Taiyuan 030031, China; 3Institute of Wheat Research, Shanxi Academy of Agricultural Sciences, Linfen 041000, China; 4 Institute of Dryland Farming, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China; 5 Hybrid Technology Engineering Research Center of Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
  • Received:2015-10-20 Revised:2016-03-14 Published:2016-06-12 Published online:2016-03-21
  • Contact: 畅志坚, E-mail: wrczj@126.com; 郑军, E-mail: zhengjsxaas@126.com
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31171839,31401385), Shanxi Province Science Foundation for Youths (2015021145), Shanxi Province Technologies R&D Program (20150311001-1,20150311001-5), the Technologies R&D Program of the Shanxi Academy of Agricultural Sciences (15YGG01), and the Youth Foundation of Beijing Academy of Agricultural and Forestry Sciences (QNJJ201428).

摘要:

NBS (nucleotide binding site)类基因是植物界中最重要的一类抗病基因。用信息学方法从普通小麦(Triticum aestivum L.)全基因组中分离出2406条含有NBS结构的完整蛋白序列,每条包含48~2272个氨基酸。根据NBS结构域两端是否连接CC或LRR结构域,将TaNBS分为N、CN、NL和CNL4类。对TaNBS所在scaffold序列的SSR位点进行诊断,从1203条scaffold序列上发现2177个SSR位点,以二碱基重复位点最多,占73.5%。针对小麦2AL染色体上的51个SSR位点开发标记,缺体—四体和双端体验证结果表明,有39个标记(76.5%)为2AL特异标记,其中24个特异标记在抗白粉病材料Khapli (2AL上携带Pm4a)和感病材料Chancellor间存在多态性。利用近等基因系Khapli/8*Cc筛选出3个可能与Pm4a连锁的NBS-SSR标记,分别是Sxaas_2AL22、Sxaas_2AL39和Sxaas_2AL46。本研究开发的与抗病序列紧密连锁的特异SSR标记可用于2AL染色体上抗病新基因的检测以及已有抗病基因的候选序列筛选。

关键词: 小麦, 抗病, NBS类基因, SSR标记, 2AL染色体

Abstract:

Nucleotide binding site (NBS)-encoding genes are the most important resistance genes (R genes) in plant kingdom. In this study, 2406 full-length NBS protein sequences, of which single protein varies from 48 aa to 2272 aa, were identified from wheat (Triticum aestivum L.) genome using bioinformatic method. These TaNBSs were divided into four categories, including N, CN, NL and CNL, according to whether the NBS domains connect CC or LRR domains at both ends. Diagnosis results showed that 1203 of all the scaffolds with TaNBS contained 2177 simple sequence repeats (SSR) loci, 73.5% of which were dinucleotide repeat sites. Based on the NBS-SSR loci on chromosome 2AL in wheat, we developed 51 molecular markers , and 39 of them (76.5%) were confirmed as chromosome specific markers using Chinese Spring nulli-tetrasomic and ditelosomic lines. Furthermore, 24 2AL-specific NBS-SSR markers showed polymorphism between resistant material Khapli carried Pm4a on chromosome 2AL and susceptible material Chancellor. Finally, three 2AL-specific NBS-SSR markers, Sxaas_2AL22, Sxaas_2AL39, and Sxaas_2AL46, were probably linked to Pm4a gene based on genetic linkage test using Pm4a-NILs (Khapli/8*Cc). These chromosome specific 2AL-NBS-SSR markers can be used to locate novel R genes or screen the candidate sequences for known R genes on chromosome 2AL.

Key words: Wheat, Disease resistance, NBS-encoding genes, SSR markers, Chromosome 2AL

[1]Li H J, Wang X M. Thinopyrum ponticum and Th. intermedium: the promising source of resistance to fungal and viral diseases of wheat. J Genet Genomics, 2009, 36: 557–565
[2]Line R F, Chen X M. Success in breeding for and managing durable resistance to wheat rusts. Plant Dis, 1995, 79: 125−1255
[3]Ott A, Trautschold B, Sandhu D. Using microsatellites to understand the physical distribution of recombination on soybean chromosomes. PLoS One, 2011, 6: e22306
[4]Yahiaoui N, Srichumpa P, Dudler R, Keller B. Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J, 2004, 37: 528–538
[5]Tommasini L, Yahiaoui N, Srichumpa P, Keller B. Development of functional markers specific for seven Pm3 resistance alleles and their validation in the bread wheat gene pool. Theor Appl Genet, 2006, 114: 165–175
[6]Srichumpa P, Brunner S, Keller B, Yahiaoui N. Allelic series of four powdery mildew resistance genes at the Pm3 locus in hexaploid bread wheat. Plant Physiol, 2005, 139: 885–895
[7]Liu W, Frick M, Huel R, Nykiforuk C L, Wang X, Gaudet D A, Eudes F, Conner R L, Kuzyk A, Chen Q, Kang Z, Laroche A. The stripe rust resistance gene Yr10 encodes an evolutionary-conserved and unique CC-NBS-LRR sequence in wheat. Mol Plant, 2014, 7: 1740–1755
[8]Cloutier S, McCallum B D, Loutre C, Banks T W, Wicker T, Feuillet C, Keller B, Jordan M C. Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Mol Biol, 2007, 65: 93–106
[9]Sela H, Spiridon L N, Petrescu A J, Akerman M, Mandel-Gutfreund Y, Nevo E, Loutre C, Keller B, Schulman A H, Fahima T. Ancient diversity of splicing motifs and protein surfaces in the wild emmer wheat (Triticum dicoccoides) LR10 coiled coil (CC) and leucine-rich repeat (LRR) domains. Mol Plant Pathol, 2012, 13: 276–287
[10]Huang L, Brooks S A, Li W, Fellers J P, Trick H N, Gill B S. Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics, 2003, 164: 655–664
[11]Periyannan S, Moore J, Ayliffe M, Bansal U, Wang X, Huang L, Deal K, Luo M, Kong X, Bariana H, Mago R, McIntosh R, Dodds P, Dvorak J, Lagudah E. The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science, 2013, 341: 786–788
[12]Saintenac C, Zhang W, Salcedo A, Rouse M N, Trick H N, Akhunov E, Dubcovsky J. Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science, 2013, 341: 783–786
[13]Cao A, Xing L, Wang X, Yang X, Wang W, Sun Y, Qian C, Ni J, Chen Y, Liu D, Wang X, Chen P. Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci USA, 2011, 108: 7727–7732
[14]Krattinger S G, Lagudah E S, Spielmeyer W, Singh R P, Espino J H, McFadden H, Bossolini E, Selter L L, Keller B. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science, 2009, 323: 1360–1363
[15]Meyers B C, Kozik A, Griego A, Kuang H, Michelmore R W. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell, 2003, 15: 809–834
[16]Bourne H R, Sanders D, McCormick F. The GTPase superfamily: conserved structure and molecular mechanism. Nature, 1991, 349: 117–127
[17]Belkhadir Y, Subramaniam R, Dangl J L. Plant disease resistance protein signaling: NBS-LRR proteins and their partners. Curr Opin Plant Biol, 2004, 7: 391–399
[18]史静东, 张小娟, 黄丽丽, 韩德俊, 康振生. 小麦 NBS-LRR类抗病基因类似片段分离和定位. 中国农业科学, 2013, 46: 2022–2031
Shi J D, Zhang X J, Huang L L, Han D J, Kang Z S. Isolation and mapping of NBS-LRR resistance gene homology sequences from wheat. Sci Agric Sin, 2013, 46: 2022–2031 (in Chinese with English abstract)
[19]Rachel B, Manuel S, Matthias P, Gary L A B, Rosalinda D A, Alexandra M A, Neil M, Melissa K, Arnaud K, Dan B, Suzanne K, Darren W, Martin T, Ian B, Gu Y, Huo N X, Luo M C, Sunish S, Bikram G, Sharyar K, Olin A, Paul K, Jan D, Richard M, Anthony H, Klaus F M, Keith J E, Michael W B, Hall N. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature, 2012, 491: 705–710
[20]Bouktila D, Khalfallah Y, Habachi Y, Mezghani M, Makni M, Makni H. Full-genome identification and characterization of NBS-encoding disease resistance genes in wheat. Mol Genet Genomics, 2015, 290: 257–271
[21]International Wheat Genome Sequencing Consortium (IWGSC). A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science, 2014, 345: 1251788
[22]Shang J, Tao Y, Chen X, Zou Y, Lei C, Wang J, Li X, Zhao X, Zhang M, Lu Z, Xu J, Cheng Z, Wan J, Zhu L. Identification of a new rice blast resistance gene, Pid3, by genome wide comparison of paired nucleotide-binding site leucine-rich repeat genes and their pseudogene alleles between the two sequenced rice genomes. Genetics, 2009, 182: 1303–1311
[23]Kang Y J, Kim K H, Shim S, Yoon M Y, Sun S, Kim M Y, Van K, Lee S H. Genome-wide mapping of NBS-LRR genes and their association with disease resistance in soybean. BMC Plant Biol, 2012, 12: 139
[24]Paterson A H, Bowers J E, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti A K, Chapman J, Feltus F A, Gowik U, Grigoriev I V, Lyons E, Maher C A, Martis M, Narechania A, Otillar R P, Penning B W, Salamov A A, Wang Y, Zhang L, Carpita N C, Freeling M, Gingle A R, Hash C T, Keller B, Klein P, Kresovich S, McCann M C, Ming R, Peterson D G, Mehboob-ur-Rahman, Ware D, Westhoff P, Mayer K F, Messing J, Rokhsar D S. The Sorghum bicolor genome and the diversifcation of grasses. Nature, 2009, 457: 551–556
[25]Cheng Y, Li X, Jiang H, Ma W, Miao W, Yamada T, Zhang M. Systematic analysis and comparison of nucleotide-binding site disease resistance genes in maize. FEBS J, 2012, 279: 2431–2443
[26]Ma Q H, Zhen W B, Liu Y C. Jacalin domain in wheat jasmonate-regulated protein Ta-JA1 confers agglutinating activity and pathogen resistance. Biochimie, 2013, 95: 359–365
[27]Guo J, Bai P, Yang Q, Liu F, Wang X, Huang L, Kang Z. Wheat zinc finger protein TaLSD1, a negative regulator of programmed cell death, is involved in wheat resistance against stripe rust fungus. Plant Physiol Biochem, 2013, 71: 164–172
[28]Deslandes L, Olivier J, Theulieres F, Hirsch J, Feng D X, Bittner-Eddy P D, Beynon J, Marco Y. Resistance to Ralstonias olanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proc Natl Acad Sci USA, 2002, 99: 2404–2409
[29]Ma Z Q, Wei J B, Cheng S H. PCR-based markers for the powdery mildew resistance gene Pm4a in wheat. TheorAppl Genet, 2004, 109: 140–145
[30]Yi Y J, Liu H Y, Huang X Q, An L Z, Wang F, Wang X L. Development of molecular markers linked to the wheat powdery mildew resistance gene Pm4b and marker validation for molecular breeding. Plant Breed, 2008, 127: 116–120
[31]Hao Y, Liu A, Wang Y, Feng D, Gao J, Li X, Liu S, Wang H. Pm23: a new allele of Pm4 located on chromosome 2AL in wheat. Theor Appl Genet, 2008, 117: 1205–1212
[32]Michael Schmolke M, Mohler V, Hartl L, Zeller F J, Hsam S K. A new powdery mildew resistance allele at the Pm4 wheat locus transferred from einkorn (Triticum monococcum). Mol Breed, 2012, 29: 449–456
[33]Mohler V, Bauer C, Schweizer G, Kempf H, Hartl L. Pm50: a new powdery mildew resistance gene in common wheat derived from cultivated emmer. J Appl Genet, 2013, 54: 259–263
[34]Bariana H S, McIntosh R A. Cytogenetic studies in wheat: XV. Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A. Genome, 1993, 36: 476–482
[35]Eriksen L, Afshari F, Christiansen M J, McIntosh R A, Jahoor A, Wellings C R. Yr32 for resistance to stripe (yellow) rust present in the wheat cultivar Carstens V. TheorAppl Genet, 2004, 108: 567–575
[36]Friebe B, Zeller F J, Mukai Y, Forster B P, Bartos P, McIntosh R A. Characterization of rust-resistant wheat-Agropyron intermedium derivatives by C-banding, in situ hybridization and isozyme analysis. Theor Appl Genet, 1992, 83: 775–782
[37]Chen S, Rouse M N, Zhang W, Jin Y, Akhunov E, Wei Y, Dubcovsky J. Fine mapping and characterization of Sr21, a temperature-sensitive diploid wheat resistance gene effective against the Puccinia graminis f. sp. tritici Ug99 race group. Theor Appl Genet, 2015, 128: 645–656

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[6] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[7] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[8] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[9] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[10] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[11] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[12] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[13] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[14] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[15] 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!