欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (06): 787-794.doi: 10.3724/SP.J.1006.2016.00787

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

9311与日本晴间一个杂种不育基因的鉴定与定位

张宏根**,张丽佳**,孙一标,司华,刘巧泉,汤述翥*,顾铭洪   

  1. 扬州大学江苏省作物遗传生理国家重点实验室培育点/粮食作物现代产业技术协同创新中心 / 教育部植物功能基因组学重点实验室, 江苏扬州225009
  • 收稿日期:2015-12-08 修回日期:2016-03-14 出版日期:2016-06-12 网络出版日期:2016-03-22
  • 通讯作者: 汤述翥, E-mail: sztang@yzu.edu.cn**同等贡献(Contributed equally to this work)
  • 基金资助:

    本研究由国家重点基础研究发展计划项目(2011CB100101)和江苏高校优势学科建设工程项目资助。

Identification and Mapping of a Hybrid Sterility Gene between 9311 and Nipponbare

ZHANG Hong-Gen**,ZHANG Li-Jia**,SUN Yi-Biao,SI Hua,LIU Qiao-Quan,TANG Shu-Zhu*,GU Ming-Hong   

  1. Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops / Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China?
  • Received:2015-12-08 Revised:2016-03-14 Published:2016-06-12 Published online:2016-03-22
  • Contact: 汤述翥, E-mail: sztang@yzu.edu.cn**同等贡献(Contributed equally to this work)
  • Supported by:

    This study was supported by the Key Project of Chinese National Programs for Fundamental Research and Development(2011CB100101)and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

摘要:

以克服亚种间杂种不育来充分发掘亚种间杂种优势是提高水稻单产的一条有效途径。本研究,从一套以日本晴为背景,9311为供体的染色体片段代换系中鉴定出一个系T9424,其与日本晴配置的F1植株小穗与花粉育性较双亲显著降低,双亲间存在不亲和。重测序结果表明T9424在第1、第4和第5染色体上导入9311片段。日本晴/T9424 F2群体内单株基因型及育性鉴定结果表明,T9424与日本晴间杂种不育基因位于第5染色体上。利用F2群体内790株单株将该杂种不育基因定位于第5染色体分子标记PSM8与A14之间110kb的物理区段内。对日本晴/T9424 F1植株花粉与胚囊育性鉴定结果表明该杂种不育基因同时控制雌、雄配子败育,将该基因暂命名为S39(t)。相关结果有助于加深对水稻亚种间杂种不育现象的认识,为该基因克隆及其育种利用奠定基础。

关键词: 水稻, 杂种不育基因, 基, 因定位

Abstract:

Exploitation of subspecific heterosis is an effective method to improve rice yield by overcoming hybrid sterility between subspecies. In this study, F1 plants of the cross between Nipponbare and T9424, a line from a set of chromosome segment substitution lines with Nipponbare background as recipient and 9311 as donor, showed the decreasing spikelet and pollen fertility compared with the two parents, indicating that there was the incompatibility between the parents. Three substituted chromosome segments on chromosome 1, 4, and 5, respectively, were identified by whole genome re-sequencing of T9424. Analysis of the genotypes and spikelet fertility of plants in Nipponbare/T9424 F2 population indicated that hybrid sterility gene between T9424 and Nipponbare was located on chromosome 5. A total of 790 plants were then used for mapping the hybrid sterility gene, and the target gene was mapped to a candidate region with the physical distance of 110 kb between PSM8 and A14 on chromosome 5. The hybrid sterility gene, named S39(t) temporarily, controlled partial abortion of both pollen grains and embryo-sac of Nipponbare/T9424 F1 plants. These results are useful for deepening understanding of the phenomenon of hybrid sterility, and lay the groundwork for the gene cloning and its use in breeding.

Key words: Rice, Hybrid sterility gene, Gene mapping

[1] Sano Y. Sterility barriers between Oryza sativa and O. glaberrima. In: International Rice Research Institute, eds. Rice Genetics. Manila: International Rice Research Institute, 1986. pp 109–118
[2] Orr H A, Presgraves D C. Speciation by postzygotic isolation: forces, genes and molecules. Bioessays, 2000, 22: 1085–1094
[3] 何光华, 郑家奎, 阴国大, 杨正林. 水稻亚种间杂种配子育性的研究. 中国水稻科学, 1994, 8: 177–180
He G H, Zheng J K, Yin G D, Yang Z L. Game fertility of F1 between indica and japonica. Chin J Rice Sci, 1994, 8: 177–180(in Chinese with English abstract)
[4] 王才林, 张兆兰, 汤述翥, 施建达. 三系法籼粳亚种间杂种优势利用研究: I.籼粳交不育与细胞质雄性不育的区别及其检测. 江苏农业学报, 1992, 8(3): 1–7
Wang C L, Zhang Z L, Tang S Z, Shi J D. Exploitation of heterosis between indica and japonica by three-line method I differentiation between indica-japonica sterility and cytoplasmic male sterility. Jiangsu J Agric Sci, 1992, 8(3): 1–7(in Chinese with English abstract)
[5] Sano Y, Sano R. Variation of the intergenic spacer region of ribosomal DNA in cultivated and wild rice species. Genome, 1990, 33: 209–218
[6] Maekawa M, Inuaki T, Shinbashi N. Spikelet sterility in F1 hybrids between rice varieties Silewah and Hayakogane. Ikushugaku Zasshi, 1991, 41: 359–363
[7] 马生健, 刘耀光, 刘金祥. 水稻的杂种不育研究进展. 植物遗传资源学报, 2014, 15: 1080–1088
Ma S J, Liu Y G, Liu J X. Research progress of hybrid sterility of rice. J Plant Genet Resour, 2014, 15: 1080–1088(in Chinese with English abstract)
[8] 陆驹飞, 严长杰, 汤述翥,朱立煌, 顾铭洪. 云南水稻品种花糯广亲和性的遗传分析. 扬州大学学报(自然科学版), 1998, 1(4): 31–35
Lu J F, Yan C J, Tang S Z, Zhu L H, Gu M H. Genetic analysis of the wide compatiblity of rice variety Huanuo from Yunnan province. J Yangzhou Univ(Nat Sci), 1998, 1(4): 31–35(in Chinese with English abstract)
[9] Yao S Y, Henderson M T, Jodon N E. Cryptic structural hybridity as a probable cause of sterility in inter-varietal hybrids of cultivated rice, Oryza sativa L. Cytologia, 1958, 23: 46–55
[10] Oka H. Analysis of genes controlling F1 sterility in rice by the use of isogenic lines. Genetics, 1974, 77: 521–534
[11] Chen J J, Ding J H, Ou-Yang Y D, Du H Y, Yang J Y, Cheng K. A triallelic system of S5 is a major regulator of the reproductive barrier and compatibility of indica-japonica hybrids in rice. Proc Natl Acad Sci USA, 2008, 105: 11436–11441
[12] 田华. 水稻籼粳亚种间杂种胚囊不育基因S7的精细定位及细胞学研究. 南京农业大学硕士学位论文, 江苏南京, 2009
Tian H. Cytological Studies and Gene Mapping of Inter-subspecies Hybrid Embryo Sac Sterility Gene S7 of Rice (Oryza sativa L.). MSThesis of Nanjing Agricultural University, Nanjing, China, 2009(in Chinese with English abstract)
[13] Singh S P, Sundaram R M, Biradar S K, Ahmed M L, Viraktamath B C, Siddiq E A. Identification of simple sequence repeat markers for utilizing wide-compatibility genes in inter-subspecific hybrids in rice (Oryza sativa L.). Theor Appl Genet, 2006, 113: 509–517
[14] Wan J, Yamaguchi Y, Kato H, IkehashiH. Two new loci for hybrid sterility in cultivated rice (Oryza sativa L.). Theor Appl Genet, 1996, 92: 183–190
[15] Wan J, Ikehashi H. Identification of anew locus S16 causing hybrid sterility in native rice varieties (Oryza sativa L.) from Taihu Lake region and Yunnan Province, China. Breed Sci, 1995, 45: 461–470
[16] Wan J M, Ikehashi H, Sakai M, Horisue H, Imbe T. Mapping of hybrid sterility gene S17 of rice (Oryza sativa L.) by isozyme and RFLP markers. Rice Genet Newsl, 1998, 15: 151–154
[17] Zhu S, Wang C, Zheng T, Zhao Z, Ikehashi H, Wan J. A new gene located on chromosome 2 causing hybrid sterility in a remote cross of rice. Plant Breed, 2005, 124: 440–445
[18] Zhu S S, Jiang L, Wang C M, Zhai H Q, Li D T, Wan J M. The origin of weedy rice Ludao in China deduced by genome wide analysis of its hybrid sterility genes. Breed Sci, 2005, 55: 409–414
[19] Zhao Z G, Jiang L , Zhang W W, Yu C Y, Zhu S S, Xie K, Tian H, Liu LL, Ikehashi H, Wan J M. Fine mapping of S31, a gene responsible for hybrid embryo-sac abortion in rice (Oryza sativa L.). Planta, 2007, 226: 1087–1096
[20] Li D T, Chen L M, Ling J, Zhu S S, Zhao Z G, Liu S J, Su N, Zhai H Q, Ikehashi H, Wan J M. Fine mapping of S32(t), a new gene causing hybrid embryo sac sterility in a Chinese landrace rice (Oryza sativa L.). Theor Appl Genet, 2007, 114: 515–524
[21] Chen M, Zhao Z, Jiang L, Wan J. A new gene controlling hybrid sterility in rice (Oryza sativa L.). Euphytica, 2012, 184: 15–22
[22] 张桂权, 卢永根. 栽培稻(Oryza sativa)杂种不育性的遗传研究: I.等基因F1不育系杂种不育性的双列分析. 中国水稻科学, 1989, 3: 97–101
Zhang G Q, Lu Y G. Genetic studies on the hybrid sterility in cultivated rice (Oryza sativa): I. Diallel analysis of the hybrid sterility among isogenic F1 sterile lines. Chin J Rice Sci, 1989, 3: 97–101 (in Chinese with English abstract)
[23] 张桂权, 卢永根.栽培稻杂种不育性的遗传研究II. F1花粉不育性的基因模式. 遗传学报, 1993, 20: 541–551
Zhang G Q, Lu Y G. Genetic studies on the hybrid sterility in cultivated rice (Oryza sativa): II. A genic model for F1 pollen sterility. Acta Genet Sin, 1993, 20: 222–228 (in Chinese with English abstract)
[24] 张桂权, 卢永根, 张华, 杨进昌, 刘桂富. 栽培稻(Oryza sativa)杂种不育性的遗传研究: IV. F1花粉不育性的基因型遗传.遗传学报, 1994, 21: 34–41
Zhang G Q, Lu Y G, Zhang H, Yang J C, Liu G F. Genetic studies on the hybrid sterility in cultivated rice (Oryza sativa): IV. Genotypes for F1 pollen sterility. Acta Genet Sin, 1994, 21: 34–41 (in Chinese with English abstract)
[25] 夏继星. 水稻矮化突变体的分子遗传学分析和杂种不育基因S20的图位克隆. 华南农业大学博士学位论文, 广东广州, 2008
Xia J X. Genetic Analysis of a Rice Dwarf Mutant Z110-6 and Molecular Cloning of S20 for Hybrid Male Sterility in Rice. PhD Dissertation of South China Agricultural University, Guangzhou, China, 2008(in Chinese with English abstract)
[26] Takahiko K, Atsushi Y, Nori K. Hybrid male sterility in rice is due to epistatic interactions with a pollen killer locus. Genetics, 2011, 189: 1083–1092
[27] Win K T, Kubo T, Miyazaki Y, Doi K,YamagataY,YoshimuraA. Identification of two loci causing F1 pollen sterility in inter-and intraspecific crosses of rice. Breed Sci, 2009, 59: 411–418
[28] Long Y M, Zhao L F, Niu B X, Su J, Wu H, Chen Y L, Zhang Q Y, Guo J X, Zhuang C X, Mei M T, Xia J X, Wang L, Wu H B, Liu Y G. Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes. Proc Natl Acad Sci USA, 2008, 105: 18871–18876
[29] Yamagata Y, Yamamoto E, Aya K, Win K T, Doi K, Sobrizal, Ito T, Kanamori H, Wu J Z, Matsumoto T, Matsuoka M, Ashikari M, Yoshimura A. Mitochondrial gene in the nuclear genome induces reproductive barrier in rice.Proc Natl Acad Sci USA, 2010, 107: 1494–1499
[30] Mizuta Y, Harushima Y, Kurata N. Rice pollen hybrid incompatibility caused by reciprocal gene loss of duplicated genes.Proc Natl Acad Sci USA, 2010, 107: 20417–20422
[31] Sano Y, Sano R. Variation of the intergenic spacer region of ribosomal DNA in cultivated and wild rice species. Genome, 1990, 33: 209–218
[32] Koide Y, Onishi K, Nishimoto D, Baruah A R, Kanazawa A, Sano Y. Sex-independent transmission ratio distortion system responsible for reproductive barriers between Asian and African rice species. NewPhytol, 2008, 179: 888–900
[33] Sano Y, Sano R, Eiguchi M, Hirano H Y. Gamete eliminator adjacent to the wx locus as recealed by pollen analysis in rice. J Hered, 1994, 85: 310–312
[34] Sano Y. Genetic comparisons of chromosome 6 between wild and cultivated rice. Jpn J Breed, 1992, 42: 561–572
[35] Zhang C Q, Hu B, Zhu K Z, Zhang H, Leng Y L, Tang S Z, Gu M H, Liu Q Q. QTL mapping for rice RVA properties using high-throughput re-sequenced chromosome segment substitution lines. Rice Sci, 2013, 20: 407–414
[36] 赵世绪, 杜中, 凌祖铭. 用子房整体透明法和微分干涉差显微镜研究水稻的胚胎发育. 遗传, 1993, 15: 33–33
Zhao S X, Du Z, Ling Z M. The use of a whole clearing technique and differential interference contrast microscope for study on embryology of rice. Hereditas(Beijing), 1993, 15: 33–33(in Chinese)
[37] Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acid Res, 1980, 8: 4321–4325
[38] 李文涛, 曾瑞珍, 张泽民, 丁效华, 张桂权. 水稻F1花粉不育基因座S-b的精细定位. 科学通报, 2006, 51:404–408
Li W T, Zeng R Z, Zhang Z M, Ding X H, Zhang G Q. Fine mapping of F1 pollen sterility lociS-b in rice. Chin Sci Bull, 2006, 51: 404–408(in Chinese)
[39] Kubo T, Yoshimura A, Kurata N. Hybrid male sterility in rice is due to epistatic interactions with a pollen killer locus. Genetics, 2011, 18:1083–1092
[40] Wang G W, He Y Q, Xu C G, Zhang Q. Fine mapping of f5-Du, a gene conferring wide-compatibility for pollen fertility in inter-subspecific hybrids of rice (Oryza sativa L.). Theor Appl Genet, 2006, 112: 382–387
[41] Ikehashi H, Araki H. Varietal screening of compatibility types revealed in F1 fertility of distant crosses in rice. Ikushugaku Zasshi, 1984, 34: 304–313
[42] Zhang H, Zhao Q, Sun Z Z, Zhang C Q, Feng Q, Tang S Z, Liang G H, Gu M H, Han B, Liu Q Q. Development and high-throughput genotyping of substitution lines carrying the chromosome segments of indica 9311 in the background of japonica Nipponbare. J Genet Genomics, 2011,38: 603–611
[43] Kitamura E. Studies on cytoplasmic sterility of hybrids in distantly related: varieties of rice (Oryza sativa L.). Jpn J Breed, 1962,12: 81–84

[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[3] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[4] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[5] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[6] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[7] 王靖天, 张亚雯, 杜应雯, 任文龙, 李宏福, 孙文献, 葛超, 章元明. 数量性状主基因+多基因混合遗传分析R软件包SEA v2.0[J]. 作物学报, 2022, 48(6): 1416-1424.
[8] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[9] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[10] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[11] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[12] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[13] 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080.
[14] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[15] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!