欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (08): 1224-1232.doi: 10.3724/SP.J.1006.2016.01224

• 耕作栽培·生理生化 • 上一篇    下一篇

小麦胚中不同形态多胺含量的变化及其与耐旱性的关系

杜红阳1,2,刘骨挺3,杨青华2,刘怀攀1,2,*   

  1. 1周口师范学院生命科学与农学学院/植物遗传与分子育种重点实验室,河南周口 466001; 2河南农业大学农学院/河南粮食作物协同创新中心,河南郑州 450002; 3中国农业大学生物学院,北京 100193
  • 收稿日期:2015-12-03 修回日期:2016-05-09 出版日期:2016-08-12 网络出版日期:2016-05-23
  • 通讯作者: 刘怀攀, Email: liuhuaipan2013@126.com, Tel: 0394-8178138
  • 基金资助:

    本研究由国家自然科学基金项目(31271627), 周口师范学院高层次人才科研启动经费(ZKNU2015109), 国家公益性行业(农业)科研专项(201203077)资助。

Dynamics in Contents of Different Types of Polyamine in Wheat Embryos and Its Relationship with Resistance to Drought Stress

DU Hong-Yang1,2,LIU Gu-Ting3 YANG Qing-Hua2,LIU Huai-Pan1,2,*   

  1. 1College of Life Science and Agronomy / Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou Henan 466001, China; 2 The College of Agronomy / The Collaborative Innovation Center of Henan Grain Crops, Zhengzhou 450002, Henan, China; 3College of Biological Science, China Agricultural University , Beijing 100193, China
  • Received:2015-12-03 Revised:2016-05-09 Published:2016-08-12 Published online:2016-05-23
  • Contact: 刘怀攀, Email: liuhuaipan2013@126.com, Tel: 0394-8178138
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31271627), the Start-up Fund for High-level Scholars of Zhoukou Normal University (ZKNU2015109), and the China Special Fund for Agro-Scientific Research in the Public Interest (201203077).

摘要:

为解析发育籽粒胚中不同种类和不同形态多胺在小麦耐旱机制中的作用,以强抗旱性的洛麦22和弱抗旱性的豫麦48为材料,于小麦花后第10天施以根际自然干旱、喷施外源多胺及其合成抑制剂处理,研究不同类型多胺含量变化及其与品种耐旱相关生理指标和产量相关性状的关系。干旱胁迫处理10天内,2个品种籽粒胚中游离态腐胺(Put)、亚精胺(Spd)和精胺(Spm)以及酸可溶性共价结合态多胺(ASCC-PA)含量均上升,尤其是豫麦48的游离态Put一直表现为急剧升高趋势。干旱处理前期两品种籽粒中游离态SpdSpm的上升幅度没有明显差异,处理后期洛麦22SpdSpm的上升幅度明显大于豫麦48;两品种胚中的酸不溶性共价结合态腐胺(AISCC-Put)含量前期均较低,到后期洛麦22AISCC-Put含量上升明显。外源SpdSpm处理后,不仅显著提升了干旱胁迫后期豫麦48胚的游离态SpdSpm的含量,并且提高了旗叶相对含水量和籽粒相对干物质增长速率,降低了旗叶相对质膜透性,抗旱性得到改善。MGBG处理强烈抑制了洛麦22胚中游离态PutSpdSpm转化,也明显降低小麦的抗旱性。外施菲咯啉显著抑制了干旱胁迫所诱导的AISCC-Put增加,同时也降低了小麦对干旱胁迫的抗性。上述结果暗示花后胚中游离态Put向游离态SpdSpmAISCC-Put的顺利转化可以提高小麦抗干旱能力。

关键词: 干旱胁迫, 小麦籽粒胚, 多胺

Abstract:

This study aimed at understanding the functions of different kinds of polyamine in developing embryos of wheat under drought stress. The drought resistant variety “Luomai 22” and the drought-sensitive variety “Yumai 48” were treated for 10 days with drought stress (DS) and DS plus exogenous polyamines (Spd and Spm) and inhibitors (MGBG and O-Phen) on the 10th day after anthesis. In both varieties, the levels of free Put, Spd and Spm and the content of acid soluble covalently conjugated polyamines (ASCC-PA) increased under DS treatment, particularly, the free Put content in Yumai 48 increased rapidly and continuously during 10 days after treatment. The increased magnitude of free Spd and Spm contents in Luomai 22 embryos was similar to that in Yumai 48 embryos at the early stage of DS, but significantly larger than that in Yumai 48 embryos at later stage of DS. The content of acid insoluble covalently conjugated Put (AISCC-Put) was low in both varieties at early stage of DS, however, increased obviously in Luomai 22 at later stage of DS, with a significantly higher level in Luomai 22 than in Yumai 48. Application of exogenous Spd or Spm resulted in significantly increased free Spd and Spm contents in Yumai 48 at later DS stage; simultaneously, the relative water content of flag leaf and the relative dry matter increase rate of grain increased and the relative plasma membrane permeability of flag leaf decreased, indicating improved drought resistance in Yumai 48. Polyamine inhibitors showed negative effects on drought resistance, in which MGBG had a strong inhibition on the conversion from free Put to free Spd or Spm in embryos of Luomai 22 and O-Phen depressed AISCC-Put induction by drought stress. These results suggest that drought tolerance of wheat might be improved by the easy conversion from free Put to free Spd, Spm, or AISCC-Put after flowering.

Key words: Drought stress, Wheat grain embryo, Polyamines

[1]Elisabeth T, Martin-Tanguy J. Floral induction and floral development of strawberry. Plant Growth Regul, 1995, 17: 157–165
[2]Icekson I, Apelbaum A. Evidence for transglutaminase activity in plant tissue. Plant Physiol, 1987, 84: 972–974
[3]Vondrakova Z, Eliasova K, Vagner M. Exogenous putrescine affects endogenous polyamine levels and the development of Picea abies somatic embryos. Plant Growth Regul, 2015, 75: 405–414
[4]Ben Mohamed H, Vadel A M, Geuns J M C, Khemira H. Effects of hydrogen cyanamide on antioxidant enzymes activity, proline and polyamine contents during bud dormancy release in superior seedless grapevine buds. Acta Physiol Plant, 2012, 34: 429–437
[5]Cao D D, Hu J, Zhu S J, Hu W M, Knapp A. Relationship between changes in endogenous polyamines and seed quality during development of sh2 sweet corn (Zea mays L.) seed. Sci Hort, 2010, 123: 301–307
[6]Legocka J, Sobieszczuk-Nowicka E. Sorbitol and NaCl stresses affect free, microsome-associated and thylakoid-associated polyamine content in Zea mays and Phaseolus vulgaris. Acta Physiol Plant, 2012, 34: 1145–1151
[7]Li Z, Zhou H, Peng Y, Zhang X Q, Ma X, Huang L K, Yan Y H . Exogenously applied spermidine improves drought tolerance in creeping bentgrass associated with changes in antioxidant defense, endogenous polyamines and phytohormones. Plant Growth Regul, 2015, 76: 71–82
[8]杨建昌, 张亚洁, 张建华, 王志琴, 朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系. 作物学报, 2004, 30: 1069–1075
Yang J C, Chen Y J, Zhang J H, Wang Z Q, Zhu Q S. Changes in contents of polyamines in the flag leaf and their relationship with drought-resistance of rice cultivars under water deficiency stress. Acta Agron Sin, 2004, 30: 1069–1075 (in Chinese with English abstract)
[9]Yin Z P, Li S, Ren J, Song X S. Role of spermidine and spermine in alleviation of drought-induced oxidative stress and photosynthetic inhibition in Chinese dwarf cherry (Cerasus humilis) seedlings. Plant Growth Regul, 2014, 74: 209–218
[10]杨建昌, 朱庆森, 王志琴, 曹显祖. 水稻籽粒中内源多胺含量及其与籽粒充实和粒重的关系. 作物学报, 1997, 23: 385–392
Yang J C, Zhu Q S, Wang Z Q, Cao X Z. Polyamines in rice grains and their relations with grain plumpness and grain weight. Acta Agron Sin, 1997, 23: 385–392 (in Chinese with English abstract)
[11]谈桂露, 张耗, 付景, 王志琴, 刘立军, 杨建昌. 超级稻花后强、弱势粒多胺浓度变化及其与籽粒灌浆的关系. 作物学报, 2009, 35: 2225–2233
Tan G L, Zhang H, Fu J, Wang Z Q, Liu L J, Yang J C. Post-anthesis Changes in concentrations of polyamines in superior and inferior spikelet and their relation with grain filling of super rice. Acta Agron Sin, 2009, 35: 2225–2333 (in Chinese with English abstract)
[12]王志琴, 张耗, 王学明, 张自常, 杨建昌. 水稻籽粒多胺的浓度与米质的关系. 作物学报, 2007, 33: 1922–1927
Wang Z Q, Zhang H, Wang X M,Zhang Z C, Yang J C. Relationship between concentrations of polyamine in filling grains and rice quality. Acta Agron Sin, 2007, 33: 1922–1927 (in Chinese with English abstract)
[13]Yang W B, Yin Y P, Li Y, Cai T, Ni Y L, Peng D L, Wang Z L. Interactions between polyamines and ethylene during grain filling in wheat grown under water deficit conditions. Plant Growth Regul, 2014, 72: 189–201
[14]刘杨, 温晓霞, 顾丹丹, 郭强, 曾爱, 李长江, 廖允成. 多胺对冬小麦籽粒灌浆的影响及其生理机制. 作物学报, 2013, 39: 712–719
Liu Y, Wen X X, Gu D D, Guo Q, Zeng A, Li C J, Liao Y C. Effect of polyamine on grain filling of winter wheat and its physiological mechanism. Acta Agron Sin, 2013, 39: 712–719 (in Chinese with English abstract)
[15]Du H Y, Zhou X G, Yang Q H, Liu H P, Ronald K. Changes in H+-ATPase activity and conjugated polyamine contents in plasma membrane purified from developing wheat embryos under short-time drought stress. Plant Growth Regul, 2015, 75: 1–10
[16]Kiriakos K, Maria D, Christakis H, Kalliopi A, Roubelakis A. A narrow-pore HPLC method for the identification and quantitation of free, conjugated, and bound polyamines. Anal Biochemistry, 1993, 214: 484–489
[17]Gupta K, Dey A, Gupta B. Plant polyamines in abiotic stress responses. Acta Physiol Plant, 2013, 35: 2015–2036
[18]李子银, 张劲松, 陈受宜. 水稻盐胁迫应答基因的克隆、表达及染色体定位. 中国科学: C辑, 1999, 29: 561–570
Li Z Y, Zhang J S, Chen S Y. Cloning and expression of response genes of rice to salt tress and its chromosomal location. Sci China: Ser C, 1999, 29: 561–570 (in Chinese)
[19]王晓云, 李向东, 邹琦. 外源多胺、多胺合成前体及抑制剂对花生连体叶片衰老的影响. 中国农业科学, 2000, 33(3): 30–35
Wang X Y, Li X D, Zou Q. Effect of polyamines on senescence of attached peanut leaves. Sci Agric Sin, 2000, 33(3): 30–35 (in Chinese with English abstract)
[20]Masgrau C, Altablella T, Farras R, Flores D, Thompson A J, Besford R T, Tiburcio A F. Inducible over-expression of oat arginine decarboxylase in transgenic tobacco plants. Plant J, 1997, 11: 465–473
[21]Szigeti Z, Lehoczki E. A review of physiological and biochemical aspects of resistance to atrazine and paraquat in Hungarian weeds. Pest Manag Sci, 2003, 59: 451–458
[22]Goicoechea N, Szalai G, Antolin M C, Sanchez-Diaz M, Paldi E. Influence of arbuscular mycorrhizae and rhizobium on free polyamines and proline levels in water-stressed alfalfa. J Plant Physiol, 1998, 153: 706–711
[23]Kubis J. Exogenous spermidine differentially alters activities of some scavenging system enzymes, H2O2 and superoxide radical levels in water-stressed cucumber leaves. J Plant Physiol, 2008, 165: 397–406
[24]Yamaguchi K, Takahashi Y, Berberich T, Imai A, Takahashi T, Michael A. A protective role for the polyamine spermine against drought stress in Arabidopsis. Biochem Biophys Res Commun, 2007, 352: 486–490
[25]Sood S, Nagar P K. The effect of polyamines on leaf senescence in two diverse rose species. Plant Growth Regul, 2003, 39: 155–160
[26]Bais H P, Sudha G S, Rarishankar G A. Putrescine and silver nitrate influences shoot multiplication, in vitro flowering and endogenous titers of polyamines in Cichorium intybus L. cv. Lucknow local. J Plant Growth Regul, 2000, 19: 238–248
[27]Romero H M, Norato R J, Posada C. Changes in polyamine content are related to low temperature resistance in potato plants. Acta Biol Colomb, 1999, 4: 27–47
[28]Shinozaki S, Ogata T, Horiuchi S. Endogenous polyamines in the pericarp and seed of the grape berry during development and ripening. Sci Hort, 2000, 83: 33–41
[29]Scaramagli S, Biondi S, Leone A, Grillo S, Torrigiani P. Acclimation to low-water potential in potato cell suspension cultures leads to changes in putressine metabolism. Plant Physiol Biochem, 2000, 38: 345–351
[30]Musetti R, Scaramagli S, Vighi C, Pressacco L, Torrigiani P, Favali M A. The involvement of polyamines in phytoplasma-infected periwinkle (Catharanthus roseus L.) plants. Plant Biosyst, 1999, 133: 37–45
[31]Rabiti A L, Betti L, Bortolotti G, Marini F, Canova A, Bagni N, Torrigiani P. Shout-term polyamine response in TMV-inoculated hypersensitive and susceptible tobacco plants. New Phytol, 1998, 139: 549–553
[32]赵福庚, 孙诚, 刘友良, 章文华. 盐胁迫下大麦根系多胺代谢与其耐盐性的关系. 植物学报, 2003, 45: 295–300
Zhao F G, Sun C, Liu Y L, Zhang W H. Relationship between polyamine metabolism in roots and salt tolerance of barley seedlings. Acta Bot Sin, 2003, 45: 295–300 (in Chinese with English abstract)
[33]Kong L, Attree S M, Fowke L C. Effects of polyethylene glycol and methylglyoxal bis (guanylhydrazone) on endogenous polyamine levels and osmotic embryo maturation in white spruce. Plant Sci, 1998, 133: 211–220

[1] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[2] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[3] 张明聪, 何松榆, 秦彬, 王孟雪, 金喜军, 任春元, 吴耀坤, 张玉先. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805.
[4] 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258.
[5] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612.
[6] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786.
[7] 周练, 刘朝显, 熊雨涵, 周京, 蔡一林. 质膜内在蛋白ZmPIP1;1参与玉米耐旱性和光合作用的功能分析[J]. 作物学报, 2021, 47(3): 472-480.
[8] 刘亚文, 张红燕, 曹丹, 李兰芝. 基于多平台基因表达数据的水稻干旱和盐胁迫相关基因预测[J]. 作物学报, 2021, 47(12): 2423-2439.
[9] 秦天元, 孙超, 毕真真, 梁文君, 李鹏程, 张俊莲, 白江平. 基于WGCNA的马铃薯根系抗旱相关共表达模块鉴定和核心基因发掘[J]. 作物学报, 2020, 46(7): 1033-1051.
[10] 张海燕, 汪宝卿, 冯向阳, 李广亮, 解备涛, 董顺旭, 段文学, 张立明. 不同时期干旱胁迫对甘薯生长和渗透调节能力的影响[J]. 作物学报, 2020, 46(11): 1760-1770.
[11] 李旭凯,李任建,张宝俊. 利用WGCNA鉴定非生物胁迫相关基因共表达网络[J]. 作物学报, 2019, 45(9): 1349-1364.
[12] 袁溢,朱双,方婷婷,蒋金金,王幼平. 人工合成甘蓝型油菜抗旱性及DNA甲基化水平分析[J]. 作物学报, 2019, 45(5): 693-704.
[13] 李萍,侯万伟,刘玉皎. 青海高原耐旱蚕豆品种青海13号响应干旱胁迫蛋白质组学分析[J]. 作物学报, 2019, 45(2): 267-275.
[14] 李鹏程,毕真真,梁文君,孙超,张俊莲,白江平. DNA甲基化参与调控马铃薯干旱胁迫响应[J]. 作物学报, 2019, 45(10): 1595-1603.
[15] 米超,赵艳宁,刘自刚,陈其鲜,孙万仓,方彦,李学才,武军艳. 白菜型冬油菜RuBisCo蛋白亚基基因rbcLrbcS的克隆及其在干旱胁迫下的表达[J]. 作物学报, 2018, 44(12): 1882-1890.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!