欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (11): 1601-1608.doi: 10.3724/SP.J.1006.2016.01601

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

过表达TaPK-R1基因增强了小麦对纹枯病的抗性和耐冻性

罗美英1,2,荣玮2,魏学宁2,杨坤2,徐惠君2,禤维言1,*,张增艳2,*   

  1. 1广西大学农学院,广西南宁530004;2中国农业科学院作物科学研究所/农作物基因资源与基因改良国家重大科学工程/农业部麦类生物学与遗传育种重点实验室,北京100081
  • 收稿日期:2016-03-09 修回日期:2016-07-11 出版日期:2016-11-12 网络出版日期:2016-08-11
  • 通讯作者: 禤维言:E-mail:xuanweiyan_1@163.com;张增艳,E-mail:zhangzengyan@caas.cn
  • 基金资助:

    本研究由国家自然科学基金项目(31271799)资助。

TaPK-R1 Overexpressing Transgenic Wheat Lines Enhance ResistancetoSharp Eyespotand Freezing Stress

LUOMei-Ying1,2,RONGWei2,WEIXue-Ning2,YANGKun2,XUHui-Jun2,XUANWei-Yan1,*,ZHANGZeng-Yan2,*   

  1. 1 Agricultural College of Guangxi University, Nanning 530004, China; 2 The National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture / Institute of Crop Science, Chinese Aca?demy of Agricultural Sciences, Beijing 100081, China
  • Received:2016-03-09 Revised:2016-07-11 Published:2016-11-12 Published online:2016-08-11
  • Contact: Xuan Weiyan:E-mail:xuanweiyan_1@163.com;Zhang Zengyan,E-mail:zhangzengyan@caas.cn
  • Supported by:

    ThisstudywassupportedbytheNationalNaturalScienceFoundationofChina(31271799).

摘要:

小麦纹枯病菌(Rhizoctonia cerealis)和倒春寒是小麦生产中重要的生物和非生物胁迫因子,本研究目的是利用转基因技术改良小麦的纹枯病抗性和耐冷性。利用构建的转基因载体pAHC25-MYC-TaPK-R1,通过基因枪介导法,将小麦AGC蛋白激酶基因TaPK-R1导入春小麦品种扬麦20,获得TaPK-R1过表达的转基因小麦。对T1至T4代植株进行PCR、RT-PCR、qRT-PCR、Western blot分析,筛选到3个转基因小麦株系,外源TaPK-R1基因能够在其植物体内遗传和超量转录,并翻译成蛋白质。利用致病力不同的R. cerealis菌株R0301和WK207,分别对3个转基因株系T1至T2代和T3至T4代进行纹枯病抗性鉴定,发现TaPK-R1过量表达提高了转基因小麦的纹枯病抗性,3个转基因株系各世代的纹枯病平均病级为1.16~2.11, 病情指数为23.20~42.10,而对照扬麦20的纹枯病病级为2.55~3.60,病情指数为51.00~72.00。用?9℃低温处理三叶一心期小麦幼苗24 h,对照扬麦20的存活率为17%,3个转基因小麦株系的存活率分别为52%、79%和96%。上述结果表明,TaPK-R1过量表达能显著增强小麦对纹枯病的抗性及对冻害的耐受性, 所获得的3个转基因小麦株系可作为潜在的抗源材料。

关键词: 小麦, 纹枯病, 蛋白激酶, TaPK-R1, 冻害

Abstract:

Sharp eyespot caused by Rhizoctonia cerealis is a soil-borne disease and freezing stress is one of the major abiotic stresses in wheat production. The object of this study was to improve wheat resistance to sharp eyespot and freezing using transgenic technique. The transformation vector pAHC25-MYC-TaPK-R1 expressing the wheat AGC protein kinase gene TaPK-R1 was constructed and transformed into the spring wheat Chinese cultivar Yangmai 20 through particle bombardment. The transformed T1 to T4 plants were subjected to PCR, RT-PCR, qRT-PCR, and Western blot analyses. Three transgenic wheat lines were generated and screened, in which the introduced TaPK-R1 transgene was inherited and expressed in higher level. After inoculation with R. cerealis virulent-isolate R0301 or WK207, these three TaPK-R1-overexpressing transgenic wheat lines displayed significant improved resistance to sharp eyespot. The infection types of these 3 transgenic lines in T1 to T4 generations were 1.16–2.11, and their disease indices were 23.20–42.10. At the same time, the infection types and disease indexes of the non-transformed wheat Yangmai 20 were 2.55–3.60 and 51.00–72.00, respectively. The three-leaf wheat seedlings were treated with ?9 ?C for 24 hours. Freezing tolerances of the three transgenic lines were dramatically improved, whose survival rates were 52%, 79%, and 96%, respectively, and significantly higher (P < 0.01) than that of the non-transformed Yangmai 20 (survival rate of 17%). Our results indicate that resistance/tolerance to sharp eyespot and freezing stress could be significantly enhanced in TaPK-R1 overexpressing transgenic wheat. The three transgenic lines may serve as potential resource in wheat breeding aiming at resistance improvement to sharp eyespot and freezing stress.

Key words: Wheat, Sharpeyespot, Proteinkinase, TaPK-R1, Freezing, Enhancedresistance

[1]ChenL,ZhangZY,LiangHX,LiuHX,DuLP,XuHJ,XinZY.OverexpressionofTiERF1enhancesresistancetosharpeyespotintransgenicwheat.JExpBot,2008,59:4195–4204 [2]ChenJ,LiGH,DuZY,QuanW,ZhangHY,CheMZ,WangZ,ZhangZJ.MappingofQTLconferringresistancetosharpeyespot(Rhizoctoniacerealis)inbreadwheatattheadultplantgrowthstage.TheorApplGenet,2013,126:2865–2878 [3]梁宜策,薛理靠,张军峰,王兴志.小麦冻害调查初报.陕西农业科学,2003,(5):38–41 LiangYC,XueLK,ZhangJF,WangXZ.Theinvestigationreportoffreezinginjurytowheat.ShaanxiJAgricSci,2003,(5):38–41(inChinesewithEnglishabstract) [4?a?niewskaJ,MacioszekVK,LawrenceCB,KononowiczAK.Fighttodeath:Arabidopsisthalianadefenseresponsetofungalnecrotrophicpathogens.ActaPhysiolPlant,2010,32:1–10 [5]RuddJJ,KeonJ,Hammond-KosackKE.Thewheatmitogen-activatedproteinkinasesTaMPK3andTaMPK6aredifferentiallyregulatedatmultiplelevelsduringcompatiblediseaseinteractionswithMycosphaerellagraminicola.PlantPhysiol,2008,147:802–815 [6]PearceLR,KomanderD,AlessiDR.ThenutsandboltsofAGCproteinkinases.NatRevMolCellBioly,2010,11:9–22 [7]DingZ,Galvan-AmpudiaCS,DemarsyE,LangowskiL,Kleine-VehnJ,FanY,MoritaMT,TasakaM,FankhauserC,OffringaR,FrimlJ.Light-mediatedpolarizationofthePIN3auxintransporterforthephototropicresponseinArabidopsis.NatCellBIol,2011,13:447–452 [8]RobertHS,OffringaR.RegulationofauxintransportpolaritybyAGCkinases.CurrOpinPlantBiol,2008,11:495–502 [9]GarciaAV,Al-YousifM,HirtH.RoleofAGCkinasesinplantgrowthandstressresponses.CellulMolLifeSci,2012,69:3259–3267 [10]RentelMC,LecourieuxD,OuakedF,UsherSL,PetersenL,OkamotoH,KnightH,PeckSC,GriersonCS,HirtH,KnightMR.OXI1kinaseisnecessaryforoxidativeburst-mediatedsignallinginArabidopsis.Nature,2004,427:858–861 [11]PetersenLN,IngleRA,KnightMR,DenbyKJ.OXI1proteinkinaseisrequiredforplantimmunityagainstPseudomonassyringaeinArabidopsis.JExpBot,2009,60:3727–3735 [12]ZhuXL,KunY,WeiXN,ZhangQF,WeiR,DuLP,YeXG,QiL,ZhangZY.ThewheatAGCkinaseTaAGC1isapositivecontributortohostresistancetothenecrotrophicpathogenRhizoctoniacerealis.JExpBot,2015,66:6591–6603 [13]ZhuXL,QiL,LiuX,CaiSB,XuHJ,HuangRF,LiJR,WeiXN,ZhangZY.ThewheatERFtranscriptionfactorTaPIE1mediateshostresponsestoboththenecrotrophicpathogenRhizoctoniacerealisandfreezingstresses.PlantPhysiol,2014,164:1499–1514 [14]AlexandraSD,KonstantinVK,ValeriyaSK,OlgaAA.VaCPK20,acalcium-dependentproteinkinasegeneofwildgrapevineVitisamurensisRupr,mediatescoldanddroughtstresstolerance.JPlantPhysiol,2015,185:1–12 [15]ChristensenAH,QuailPH.Ubiquitinpromoter-basedvectorsforhigh-levelexpressionofselectableand/orscreenablemarkergenesinmonocotyledonousplants.TransgenicRes,1996,5:213–218 [16]徐惠君,庞俊兰,叶兴国,杜丽璞,李连城,辛志勇,马有志,陈剑平,陈炯,程顺和,吴宏亚.基因枪介导法向小麦导入黄花叶病毒复制酶基因的研究.作物学报,2001,27:688–693 XuHJ,PangJL,YeXG,DuLP,LiLC,XinZY,MaYZ,ChenJP,ChenJ,ChengSH,WuHY.StudyonthegenetransferringofNib8intowheatforitsresistancetotheYellowmosaicvirusbybombardment.ActaAgronSin,2001,27:688–694(inChinesewithEnglishabstract) [17]Saghai-MaroofMA,SolimanKM,JorgensenRA,AllardRW.RibosomalDNAspacer-lengthpolymorphismsinbarley:Mendelianinheritance,chromosomallocation,andpopulationdynamics.ProcNatlAcadSciUSA,1984,81:8014-8019 [18]LivakKJ,SchmittgenTD.Analysisofrelativegeneexpressiondatausingreal-timequantitativePCRandthe2–ΔΔCTmethod.Methods,2001,25:402–408 [19]申芳嫡,洪彦涛,杜丽璞,徐惠君,马翎健,张增艳.转细胞凋亡抑制基因OpIAP和p35增强小麦对纹枯病的抗性.作物学报,2015,41:1490–1499 ShenFD,HongYT,DuLP,XuHJ,MaLJ,ZhangZY.ExpressionofApoptosisInhibitorgenesOpIAPandp35enhancesresistancetoRhizoctoniacerealisintransgenicwheat.ActaAgronSin,2015,41:1490–1499(inChinesewithEnglishabstract) [20]魏学宁,任丽娟,张淼,张巧凤,刘欣,周淼平,马鸿翔,吴继中,马翎健,张增艳.人工合成抗纹枯病小麦新种植的鉴定.植物遗传资源学报,2015,16:373–378 WeiXN,RenLJ,ZhangM,ZhangQF,LiuX,ZhouMP,MaHX,WuJZ,MaLJ,ZhangZY.Identificationofsyntheticwheataccessionwithresistancetowheatsharpeyespot.JPlantGenetResour,2015,16:373–378(inChinesewithEnglishabstract) [21]王裕中,吴志凤,史建荣,陈怀谷,邵伯坤.小麦纹枯病流行规律研究.江苏农业科学,1993,(麦类纹枯病专辑):48–53 WangYZ,WuZF,ShiJR,ChenHG,ShaoBK.Epidemiclawresearchofwheatsharpeyespot.JiangsuAgricSci,1993,(specialissueofwheatsharpeyesport):48–53(inChinesewithEnglishabstract) [22]蔡士宾,任丽娟,颜伟,吴纪中,陈怀谷,吴小有,张仙义.小麦抗纹枯病种质创新及QTL定位的初步研究.中国农业科学,2006,39:928–934 CaiSB,RenLJ,YanW,WuJZ,ChenHG,WuXY,ZhangXY.Germplasmdevelopmentandmappingofresistancetosharpeyespot(Rhizoctoniacerealis)inwheat.SciAgricSin,2006,39:928–934(inChinesewithEnglishabstract) [23]刘颖,张巧凤,付必胜,蔡士宾,蒋彦婕,张志良,邓渊钰,吴纪中,戴廷波.小麦纹枯病抗源的遗传多样性及抗性基因位点SSR标记分析.作物学报,2015,41:1671–1681 LiuY,ZhangQF,FuBS,CaiSB,JiangYJ,ZhangZL,DengYY,WuJZ,DaiTB.GeneticdiversityofwheatgermplasmresistanttosharpeyespotandgenotypingofresistancelociusingSSRmarkers.ActaAgronSin,2015,41:1671–1681(inChinesewithEnglishabstract) [24]LiuBY,LuY,XinZY,ZhangZY.Identificationandantifungalassayofawheatb-1,3-glucanase.BiotechnolLett,2009,31:1005–1010 [25]周淼平,周小青,张增艳,董娜,马鸿翔,姚金保.TaPIMP1过量表达提高转基因小麦纹枯病抗性的研究.核农学报,2011,25:421–426 ZhouMP,LiZhouXQ,ZhangZY,DongN,MaHX,YaoJB.Over-expressionofTaPIMP1enhancedresistancetowheatsharpeyespotintransgenicwheat.JNuclAgricSci,2011,25:421–426(inChinesewithEnglishabstract) [26]WeiXN,ShenFD,HongYT,RongW,DuLP,LiuX,XuHJ,MaLJ,ZhangZY.Thewheatcalcium-dependentproteinkinaseTaCPK7-Dpositivelyregulateshostresistancetosharpeyespotdisease.MolPlantPathogen,2016,online.doi:10.1111/mpp12360 [27]LiuST,LiuSW,WangM,WeiTT,MengC,WangM,XiaGM.AwheatsimilartoRCD-ONEgeneenhancesseedlinggrowthandabioticstressresistancebymodulatingredoxhomeostasisandmaintaininggenomicintegrity.PlantCell,2014,26:164–180 [28]XiangY,HuangY,XiongL.Characterizationofstress-responsiveCIPKgenesinriceforstresstoleranceimprovement.PlantPhysiol,2007,44:1416–1428 [29]CaiG,WangG,WangL,PanJ,LiuY,LiD.ZmMKK1,anovelgroupAmitogen-activatedproteinkinasegeneinmaize,conferredchillingstresstoleranceandwasinvolvedinpathogendefenseintransgenictobacco.PlantSci,2014,214:57–73

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[6] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[7] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[8] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[9] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[10] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[11] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[12] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[13] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[14] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[15] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!