作物学报 ›› 2016, Vol. 42 ›› Issue (11): 1592-1600.doi: 10.3724/SP.J.1006.2016.01592
王辉,梁前进,胡小娇,李坤,黄长玲,王琪,何文昭,王红武*,刘志芳*
WANG Hui,LIANG Qian-Jin,HU Xiao-Jiao,LI Kun,HUANG Chang-Ling,WANG Qi,HE Wen-Zhao,WANG Hong-Wu*,LIU Zhi-Fang*
摘要:
为研究玉米穗部性状对不同种植密度的遗传响应,以郑58和HD568为亲本构建的220个重组自交系群体为材料,于2014年春、2014年冬及2015年春分别在北京和海南进行3个种植密度的田间试验,调查玉米穗长、穗粗、穗行数和行粒数等表型性状。利用SAS软件计算穗部性状的最优线性无偏估计值(BLUP),并采用完备区间作图法进行QTL定位。结果表明,在3个种植密度下共检测到42个QTL,单个QTL可解释4.20%~14.07%的表型变异。3个种植密度下同时检测到位于第2染色体上控制穗行数的QTL。2个种植密度下同时检测到4个与穗粗、穗行数和行粒数有关的QTL,其中第4染色体上1个与穗行数有关的主效QTL,在低、中种植密度下可分别解释表型变异的10.88%和14.07%。此外,在第2、4和9染色体上检测到3个同时调控不同穗部性状的QTL。研究结果表明玉米穗部性状在不同种植密度下的遗传调控发生变化,在不同密度下共同检测到的稳定QTL可应用于精细定位或开发玉米耐密性分子标记用于辅助育种。
[1]Ku L X, Zhao W M, Zhang J, Wu L C, Wang C L, Wang P A, Zhang W Q, Chen Y H. Quantitative trait loci mapping of leaf angle and leaf orientation value in maize (Zea mays L.). Theor Appl Genet, 2010, 121: 951–959 [2]Yan J B, Tang H, Huang Y Q, Zheng Y L, Li J S. Quantitative trait loci mapping and epistatic analysis for grain yield and yield components using molecular markers with an elite maize hybrid. Euphytica, 2006, 149: 121–131 [3]Li C, Li Y, Sun B, Peng B, Liu C, Liu Z Z, Yang Z Z, Li Q C, Tan W W, Zhang Y, Wang D, Shi Y S, Song Y C, Wang T Y, Li Y. Quantitative trait loci mapping for yield components and kernel-related traits in multiple connected RIL populations in maize. Euphytica, 2013, 19: 303–316 [4]Nikoli? A, An?elkovi? V, Dodig D, Drini? S M, Kravi? N, Mici?-Ignjatovi? D. Identification of QTLs for drought tolerance in maize: II. yield and yield components. Genetika, 2013, 45: 341–350 [5]Liu L, Du Y F, Huo D A, Wang M, Shen X M, Yue B, Qiu F Z, Zheng Y L, Yan J B, Zhang Z X. Genetic architecture of maize kernel row number and whole genome prediction. Theor Appl Genet, 2015, 128: 2243–2254 [6]Zhang Z H, Wu X Y, Shi C N, Wang R N, Li S F, Wang Z H, Liu Z H, Xue Y D, Tang G L, Tang J H. Genetic dissection of the maize kernel development process via conditional QTL mapping for three developing kernel-related traits in an immortalized F2 population. Mol General Genet, 2015, 291: 437–454 [7]Peter B, Namiko S N, David J. Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus. Nat Genet, 2013, 45: 334–337 [8]Liu L, Du Y F, Shen X M, Li M F, Sun W, Huang J, Liu Z J, Tao Y S, Zheng Y L, Yan J B, Zhang Z X. KRN4 controls quantitative variation in maize kernel row number. Plos Genet, 2015, 11(11): e1005670 [9]Guo J, Su G, Zhang J, Wang G. Genetic analysis and QTL mapping of maize yield and associate agronomic traits under semi-arid land condition. Afr J Biotechnol, 2008, 7: 1829–1838 [10]Ribaut J M, Jiang C, Gonzalez-De-Leon D, Edmeades G O, Hoisington D A. Identification of quantitative trait loci under drought conditions in tropical maize. 2. yield components and marker-assisted selection strategies. Theor Appl Genet, 1997, 94: 887–896 [11]Gonzalo M, Holland J B, Vyn T J, Mclntyre L M. Direct mapping of density response in a population of B73 × Mo17 recombinant inbred lines of maize (Zea mays L.). Heredity, 2010, 104: 583–599 [12]Guo J, Chen Z, Liu Z, Wang B B, Song W B, Li W, Chen J, Dai J R, Lai J S. Identification of genetic factors affecting plant density response through QTL mapping of yield component traits in maize (Zea mays L.). Euphytica, 2011, 182: 409–422 [13]刘小刚. 玉米茎秆强度QTL定位研究. 中国农业科学院硕士学位论文, 北京, 2014 Liu X G. Quantitative Trait Locus Analysis of Stalk Strength in Maize. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2014 (in Chinese with English abstract) [14]马飞前. 玉米茎秆纤维性状QTL定位. 中国农业科学院硕士学位论文, 北京, 2014 Ma F Q. Mapping of Quantitative Trait Loci (QTL) for Stalk Fiber Traits in Maize. MS Thesis of Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2014 (in Chinese with English abstract) [15]Ganal M W, Gregor D, Andreas P, Aurélie B, Buckler E S, Alain C, Clarke J D, Graner E M, Hansen M, Joets J, Paslier M-C L, McMullen M D, Montalent P, Rose M, Sch?n C C, Sun Q, Walter H, Martin O C, Matthieu F. A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. Plos One, 2011, 6(12): e28334 [16]Van Ooijen J: JoinMap4.software for the Calculation of Genetic Linkage Maps in Experimental Populations. Kyazma B V, Wageningen, Netherlands, 2006. p 56 [17]Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M A R, Bender D, Maller J, Sklar P, Bakker P I W, Daly M J, Sham P C. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Human Genet, 2007, 81: 559–575 [18]Wang J K. QTL IciMapping: Integrated Software for Building Linkage Maps and Mapping Quantitative Trait Genes. International Plant and Animal Genome Conference XXI 2013. Scherago International, San Diego, CA, 2013 [19]Kosambi D D. The estimation of map distance from recombination valves. Annu Eugenia, 1994, 12: 172–175 [20]Knapp S, Stroup W, Ross W. Exact confidence intervals for heritability on a progeny mean basis1. Crop Sci, 1985, 25: 192–194 [21]Piepho H P, M?hring J, Melchinger A E, Büchse A. BLUP for phenotypic selection in plant breeding and variety testing. Euphytica, 2008, 161: 209–228 [22]王建康. 数量性状基因的完备区间作图方法. 作物学报, 2009, 35: 239–245 Wang J K. Inclusive composite interval mapping of quantitative trait genes. Acta Agron Sin, 2009, 35: 239–245 (in Chinese with English abstract) [23]Cai L, Li K, Yang X, Li J. Identification of large-effect QTL for kernel row number has potential for maize yield improvement. Mol Breed, 2014, 34: 1087–1096 [24]Yang C, Liu J, Rong T Z. Detection of quantitative trait loci for ear row number in F2 populations of maize. Genet Mol Res, 2015, 14: 14229–14238 [25]Li K, Yan J, Li J, Yang X. Genetic architecture of rind penetrometer resistance in two maize recombinant inbred line populations. BMC Plant Biol, 2014, 14: 152 [26]秦伟伟, 李永祥, 李春辉, 陈林, 吴迅, 白娜, 石云素, 宋燕春, 张登峰, 王天宇, 黎裕. 基于高密度遗传图谱的玉米籽粒性状QTL定位. 作物学报, 2015, 41: 1510–1518 Qin W W, Li Y X , Li C H, Chen L, Wu X, Bai N, Shi Y S, Song Y C, Zhang D F, Wang T Y, Li Y. QTL mapping for kernel related traits based on a high-density genetic map. Acta Agron Sin, 2015, 41: 1510–1518 (in Chinese with English abstract) [27]吕学高, 蔡一林, 陈天青, 徐德林, 王伟林, 刘志斋, 王久光. 玉米穗部性状QTL定位. 西南大学学报: 自然科学版, 2008, 30(2): 64–70 Lü X G, Cai Y L, Chen T Q, Xu D L, Wang W L, Liu Z Z, Wang J G. QTL mapping for ear traits in maize (Zea mays L.). J Southwest Univ (Nat Sci Edn), 2008, 30(2): 64–70 (in Chinese with English abstract) [28]Veldboom L R, Lee M. Genetic mapping of quantitative trait loci in maize in stress and nonstress environments: I. Grain yield and yield components. Crop Sci, 1996, 36: 1310–1319 [29]兰进好, 李新海, 高树仁, 张宝石, 张世煌. 不同生态环境下玉米产量性状QTL分析. 作物学报, 2005, 31: 1253–1259 Lan J H, Li X H, Gao S R, Zhang B S, Zhang S H. QTL analysis of yield components in maize under different environments. Acta Agron Sin, 2005, 31: 1253–1259 (in Chinese with English abstract) [30]Brown P J, Upadyayula N, Mahone G S, Tian F, Bradbury P J, Myles S, Holland J B, Flint-Garcia S, McMullen M D, Buckler E S, Rocheford T R. Distinct genetic architectures for male and female inflorescence traits of maize. PloS Genet, 2011, 7: 1276–1280 [31]Würschum T. Mapping QTL for agronomic traits in breeding population. Theor Appl Genet, 2012, 125: 201–210 [32]Cai L C, Li K, Yang X H, Li J S. Identification of large-effect QTL for kernel row number has potential for maize yield improvement. Mol Breed, 2014, 34: 1087–1096 [33]Tuberosa R, Salvi S, Sanguineti M C, Landi P, Maccaferri M, Conti S. Mapping QTLs regulating morpho-physiological traits and yield: case studies, shortcomings and perspectives in drought-stressed maize. Ann Bot, 2002, 89: 941–963 [34]Zhuang J Y, Lin H X, Lu J, Qian H R, Hittalmani S, Huang N, Zheng K L. Analysis of QTL environment interaction for yield components and plant height in rice. Theor Appl Genet, 1997, 95: 799–808 [35]Chen J, Zhu J. Genetic effects and genotype × environment interactions for cooking quality traits in Indica-japonica crosses of rice (Oryza sativa L.). Euphytica, 1999, 109: 9–15 [36]Shi C H, He C X, Zhu J, Chen J G. Analysis of genetic effects and genotype × environment interaction effects for apparent quality traits of indica rice. Chin J Rice Sci, 1999, 13: 179–182 (in English with Chinese abstract) [37]Huang N, Angeles E R, Domingo J, Magpantay S, Singh S, Zhang G, Kumaravadivel N, Bennett J, Khush G S. Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR. Theor Appl Genet, 1997, 95: 313–320 [38]Tanksley S D, Ahn N, Causse M, Coffman R, Fulton T, McCouch S R, Second G, Tai T, Wang Z, Wu K, Yu Z. RFLP mapping of the rice genome. In: Rice Genetics II. Los Banos, Laguna: IRRI, 1991. pp 435–442 |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[3] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[4] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[5] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[6] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[7] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[8] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[9] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[10] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[11] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[12] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[13] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
[14] | 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738. |
[15] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
|