作物学报 ›› 2016, Vol. 42 ›› Issue (11): 1577-1591.doi: 10.3724/SP.J.1006.2016.01577
• 作物遗传育种·种质资源·分子遗传学 • 下一篇
秦朋飞,尚小光,宋健,郭旺珍*
QIN Peng-Fei,SHANG Xiao-Guang,SONG Jian,GUO Wang-Zhen*
摘要:
酰基辅酶A结合蛋白(ACBP)家族基因在植物正常生长发育、响应逆境胁迫及生物膜修复等方面具有重要作用。本研究基于陆地棉(Gossypium hirsutum)遗传标准系TM-1基因组序列信息,鉴定并获得21个棉花ACBP家族基因成员的全序列和染色体定位等信息。聚类分析表明这21个基因分属于I~IV类。依据与拟南芥的同源性,将棉花ACBP家族基因命名为GhACBP1~GhACBP6等6大亚类。转录组分析表明,该家族基因在不同组织、不同发育时期表达差异较大。不同逆境诱导分析表明,GhACBP1、GhACBP3和GhACBP6显著受盐、旱、低温、高温逆境胁迫诱导,而GhACBP4和GhACBP5对逆境胁迫响应不强烈。进一步分析表明,GhACBP3和GhACBP6的表达受过氧化氢(H2O2)、水杨酸(SA)、茉莉酸(JA)、脱落酸(ABA)和乙烯(ET)的诱导。病毒诱导的基因沉默(VIGS)试验表明,沉默GhACBP3和GhACBP6亚类基因会降低棉花植株对干旱和盐的耐性。目标基因沉默后,植株干物质积累下降,株高变矮,超氧化物歧化酶(SOD)和过氧化物酶(POD)活性降低,丙二醛(MDA)含量升高,表明GhACBP3和GhACBP6在棉花抗旱、耐盐中发挥作用。研究为利用ACBP家族基因进行棉花抗逆性研究及应用提供参考。
[1]. Liu F, Zhang X, Lu C, Zeng X, Li Y, Fu D, Wu G. Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis. J Exp Bot, 2015, 66: 5663–5681 [2]. Guidotti A, Forchetti C M, Corda M G, Konkel D, Bennett C D, Costa E. Isolation, characterization, and purification to homogeneity of an endogenous polypeptide with agonistic action on benzodiazepine receptors. Proc Natl Acad Sci USA, 1983, 80: 3531–3535 [3]. Alho H, Costa E, Ferrero P, Fujimoto M, Cosenza-Murphy D, Guidotti A. Diazepam-binding inhibitor: a neuropeptide located in selected neuronal populations of rat brain. Science, 1985, 229: 179–182 [4]. Weselake R J, Nykiforuk C L, Laroche A, Patterson N A, Wiehler W B, Szarka S J, Moloney M M, Tari L W, Derekh U. Expression and properties of diacylglycerol acyltransferase from cell-suspension cultures of oilseed rape. Biochem Soc T, 2000, 28. 6 [5]. Hills M J, Dann R, Lydiate D, Sharpe A. Molecular cloning of a cDNA from Brassicanapus L. for a homologue of acyl-CoA-binding protein. Plant Mol Biol, 1994, 25: 917–920 [6]. Engeseth N J, Pacovsky R S, Newman T, Ohlrogge J B. Characterization of an Acyl-CoA-Binding Protein from Arabidopsis thaliana. Arch Biochem Biophys, 1996, 331: 55–62 [7]. Erber A, Horstmann C, Schobert C. A cDNA clone for acyl-CoA-binding protein from castor bean. Plant Physiol, 1997, 114: 396–396 [8]. Metzner M L, Ruecknagel K P, Knudsen J, Kuellertz G, Mueller-Uri F, Diettrich B. Isolation and characterization of two acyl-CoA-binding proteins from proembryogenic masses of Digitalis lanataEhrh. Planta, 2000, 210: 683–685 [9]. Guerrero C, Martín-Rufián M, Reina JJ, Heredia A. Isolation and characterization of a cDNA encoding a membrane bound acyl-CoA binding protein from Agave americana L. epidermis. Plant Physiol Bioch, 2006, 44: 85–90 [10]. Reddy A, Ranganathan B, Haisler R, Swize M. A cDNA encoding acyl-CoA-binding protein from cotton. Plant Physiol, 1996, 111: 348 [11]. Burton M, Rose T M, Faergeman N J, Knudsen J. Evolution of the acyl-CoA binding protein (ACBP). Biochem J, 2005, 392: 299–307 [12]. Xiao S, Chye M L. New roles for acyl-CoA-binding proteins (ACBPs) in plant development, stress responses and lipid metabolism. Prog Lipid Res, 2011, 50: 141–151 [13]. Fan J, Liu J, Culty M, Papadopoulos V. Acyl-coenzyme A binding domain containing 3 (ACBD3; PAP7; GCP60): an emerging signaling molecule. Prog Lipid Res, 2010, 49: 218–234 [14]. Xiao S, Chye M L. An Arabidopsis family of six acyl-CoA-binding proteins has three cytosolic members. Plant Physiol Bioch, 2009, 47: 479–484 [15]. Kannan L, Knudsen J, Jolly C A. Aging and acyl-CoA binding protein alter mitochondrial glycerol-3-phosphate acyltransferase activity. Biochim Biophys Acta, 2003, 1631: 12–16 [16]. Knudsen J, Burton M, Faergeman N. Long chain acyl-CoA esters and acyl-CoA binding protein (ACBP) in cell function. Advances in Molecular and Cell Biology: Elsevier, 2003. pp: 123–152 [17]. Faergeman N J, Feddersen S, Christiansen J K, Larsen M K, Schneiter R, Ungermann C, Mutenda K, Roepstorff P, Knudsen J. Acyl-CoA-binding protein, Acb1p, is required for normal vacuole function and ceramide synthesis in Saccharomyces cerevisiae. Biochem J, 2004, 380: 907–918 [18]. Gaigg B, Neergaard T B, Schneiter R, Hansen J K, Faergeman N J, Jensen N A, Andersen J R, Friis J, Sandhoff R, Schr?der H D, Knudsen J. Depletion of Acyl-Coenzyme A-Binding Protein Affects Sphingolipid Synthesis and Causes Vesicle Accumulation and Membrane Defects in Saccharomyces cerevisiae. Mol Biol Cell, 2001, 12: 1147–1160 [19]. Larsen M K, Tuck S, Faergeman N J, Knudsen J. MAA-1, a novel acyl-CoA-binding protein involved in endosomal vesicle transport in Caenorhabditis elegans. Mol Biol Cell, 2006, 17: 4318–4329 [20]. Chen Q F, Xiao S, Qi W, Mishra G, Ma J, Wang M, Chye M L. The Arabidopsis acbp1acbp2 double mutant lacking acyl-CoA-binding proteins ACBP1 and ACBP2 is embryo lethal. New Phytol, 2010, 186: 843–855 [21]. Baud S, Guyon V, Kronenberger J, Wuillème S, Miquel M, Caboche M, Lepiniec L, Rochat C. Multifunctional acetyl-CoA carboxylase 1 is essential for very long chain fatty acid elongation and embryo development in Arabidopsis. Plant J, 2003, 33: 75–86 [22]. Sellwood C, Slabas A, Rawsthorne S. Effects of manipulating expression of acetyl-CoA carboxylase I in Brassica napus L. embryos. Biochem Soc T, 2000, 28: 598–600 [23]. Gao W, Xiao S, Li H Y, Tsao S W, Chye M L. Arabidopsis thaliana acyl-CoA-binding protein ACBP2 interacts with heavy-metal-binding farnesylated protein AtFP6. New Phytol, 2009, 181: 89–102 [24]. Du Z Y, Chen M X, Chen Q F, Xiao S, Chye M L. Overexpression of Arabidopsis acyl-CoA-binding protein ACBP2 enhances drought tolerance. Plant Cell Environ, 2013, 36: 300-314. [25]. Du Z Y, Xiao S, Chen Q F, Chye M L. Depletion of the membrane-associated acyl-coenzyme A-binding protein ACBP1 enhances the ability of cold acclimation in Arabidopsis. Plant Physiol, 2010, 152: 1585–1597 [26]. Chen Q F, Xiao S, Chye M L. Overexpression of the Arabidopsis 10-kilodalton acyl-coenzyme A-binding protein ACBP6 enhances freezing tolerance. Plant Physiol, 2008, 148: 304–315 [27]. Meng W, Su Y C, Saunders R M, Chye M L. The rice acyl-CoA-binding protein gene family: phylogeny, expression and functional analysis. New Phytol, 2011, 189: 1170–1184 [28].戴海芳, 武辉, 阿曼古丽?买买提阿力, 王立红, 麦麦提?阿皮孜, 张巨松. 不同基因型棉花苗期耐盐性分析及其鉴定指标筛选. 中国农业科学, 2014, 47: 1290–1300 Dai H F, Wu H, Amanguli?Maimaitiali, Wang L H, Maimaiti?Apizi, Zhang J S. Scientia Agricultura Sinica, 2014, 47: 1290–1300 (in Chinese with English abstract). [29]. Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, Zhang J, Saski C A, Scheffler B E, Stelly D M, Hulse-Kemp A M, Wan Q, Liu B, Liu C, Wang S, Pan M, Wang Y, Wang D, Ye W, Chang L, Zhang W, Song Q, Kirkbride R C, Chen X, Dennis E, Llewellyn D J, Peterson D G, Thaxton P, Jones D C, Wang Q, Xu X, Zhang H, Wu H, Zhou L, Mei G, Chen S, Tian Y, Xiang D, Li X, Ding J, Zuo Q, Tao L, Liu Y, Li J, Lin Y, Hui Y, Cao Z, Cai C, Zhu X, Jiang Z, Zhou B, Guo W, Li R, Chen Z J. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol, 2015, 33: 531–537 [30]. Zhang F, Li S, Yang S, Wang L, Guo W. Overexpression of a cotton annexin gene, GhAnn1, enhances drought and salt stress tolerance in transgenic cotton. Plant Mol Biol, 2015, 87: 47–67 [31]. Julie D. Thompson T J G, Frédéric P, Fran?ois J D G. Higgins. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997, 25: 4876–4882 [32]. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 2011, 28: 2731–2739 [33]. Xiao S, Chye M L. Overexpression of Arabidopsis ACBP3 enhances NPR1-dependent plant resistance to Pseudomonas syringe pv tomato DC3000. Plant Physiol, 2011, 156: 2069–2081 [34]. Xiao S, Gao W, Chen Q F, Chan S W, Zheng S X, Ma J, Wang M, Welti R, Chye M L. Overexpression of Arabidopsis Acyl-CoA Binding Protein ACBP3 Promotes Starvation-Induced and Age-Dependent Leaf Senescence. Plant Cell, 2010, 22: 1463–1482 [35]. Chu X, Wang C, Chen X, Lu W, Li H, Wang X, Hao L, Guo X. The Cotton WRKY Gene GhWRKY41 Positively Regulates Salt and Drought Stress Tolerance in Transgenic Nicotiana benthamiana. PLoS One, 2015, 10: e0143022 [36]. Shi J, Zhang L, An H, Wu C, Guo X. GhMPK16, a novel stress-responsive group D MAPK gene from cotton, is involved in disease resistance and drought sensitivity. BMC Mol Biol, 2011, 12: 22 |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[3] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[4] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[5] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[6] | 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058. |
[7] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[8] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[9] | 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190. |
[10] | 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198. |
[11] | 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221. |
[12] | 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247. |
[13] | 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026. |
[14] | 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839. |
[15] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
|