欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (03): 442-453.doi: 10.3724/SP.J.1006.2017.00442

• 耕作栽培·生理生化 • 上一篇    下一篇

基于归一化法的烤烟干物质积累建模与特征分析

沈杰1,蔡艳1,*,何玉亭1,李启权1,杜宣延1,3,王昌全1,罗定棋2   

  1. 1 四川农业大学资源学院,四川成都 611130; 2 四川省烟草公司泸州市公司,四川泸州 646000; 3 四川省攀枝花市农林科学院,四川攀枝花 617061
  • 收稿日期:2016-04-06 修回日期:2016-09-18 出版日期:2017-03-12 网络出版日期:2016-09-28
  • 通讯作者: 蔡艳,E-mail: caiyya@126.com
  • 基金资助:

    本研究由国家“十二五”科技支撑计划(2012BAD14B18-02),四川省烟草公司重点项目(SCYC201504),四川省烟草公司泸州市公司重点项目(2013003)和四川农业大学“双支计划”基金(03571890)资助。

Dynamic Simulation of Dry Matter Accumulation in Flue-cured Tobacco and Analysis of Its Characteristics Based on Normalized Method

SHEN Jie1,CAI Yan1,*,HE Yu-Ting1,LI Qi-Quan1,DU Xuan-Yan1,3,WANG Chang-Quan1,LUO Ding-Qi2   

  1. 1 College of Resources, Sichuan Agricultural University, Chengdu 611130, China; 2 Luzhou Company of Sichuan Provincial Tobacco Corporation, Luzhou 646000, China; 3 Academy of Agriculture and Forestry Sciences, Panzhihua 617061, China
  • Received:2016-04-06 Revised:2016-09-18 Published:2017-03-12 Published online:2016-09-28
  • Contact: 蔡艳,E-mail: caiyya@126.com
  • Supported by:

    This study was supported by the National Science and Technology Support Program of 12th Five-Year (2012BAD14B18-02), the Key Projects of Sichuan Provincial Tobacco Corporation (SCYC201504), the Key Projects of Luzhou Company of Sichuan Provincial Tobacco Corporation (2013003), and the “Double Support Plan” Foundation of Sichuan Agricultural University (03571890).

摘要:

为探讨不同株型烤烟品种干物质积累动态模型和变化特征,实现不同品种烤烟干物质积累的有效预测,以不同株型品种云烟97、NC71、K326为材料,采用田间实测和数值模拟方法研究4个密度(13 890、15 150、16 660和18 510株 hm–2)水平下烤烟干物质积累动态,分析关键生长参数特征,以期为烤烟合理密植、烟叶增产提供新的理论与方法。结果表明: (1)基于归一化法筛选并建立了相对干物质积累量与相对生长时间的干物质积累动态模型(MMF),方程表达式为y = (ab+cxd)/(b+xd),模拟准确度k值在0.9032~1.0482之间,决定系数R2在0.94以上,进一步推导发现,方程具有过原点性、有界性、单调递增性等特点,符合生物学意义,能较好地模拟烤烟干物质积累动态特征;利用该模型分析积累特征参数,将烤烟干物质积累过程划分为缓慢增长期、快速增长期、减速增长期。(2)随着种植密度的增加,烤烟速率峰值出现时间(Tm)、快速增长期开始时间(RT1)、结束时间(RT2)均有不同程度提前;密植条件下(D3、D4),NC71和K326快速增长期持续时间(Td)及其积累比例(Ra)明显提升;通径分析表明,TdRa均能影响烤烟最终干物质积累水平,其与干物重均显著(0.6500*)或极显著(0.7758**)正相关,其中Ra对干物重直接通径系数达1.7097,对回归方程的总贡献率也达1.3264。(3)耐密性表现为筒型>鼓型>塔型,对应品种K326、NC71、云烟97的适宜密度分别为18 510株 hm–2 (D4)、16 660株 hm–2 (D3)、15 150 (D2) ~
16 660 (D3)株 hm–2

关键词: 烤烟, 株型, 密度, 干物质积累, MMF模型

Abstract:

To investigate a model to simulate and effectively predict the dynamic dry matter accumulation (DMA) character in different flue-cured tobacco varieties. We conducted a field experiment using three plant types of Yunyan 97, NC71, and K326 with four density treatments of 13 890, 15 150, 16 660, and 18 510 plants ha–1. To measure and simulate growth parameters, hoping to provide a new theory and method for rational close planting and higher productivity. A MMF curve equation, y = (ab+cxd)/(b+xd), was developed for relative DMA and relative accumulated time by the normalization method. The dynamic model could make a good estimation for DMA dynamics with the accuracies (k) of 0.9032–1.0482, and the precision (R2) above 0.94. It was also found that the equation had the characteristics of the origin, the boundedness and the monotone increasing, and it was in accordance with the biological significance. The DMA of flue-cured tobacco was divided into the slow growing stage, rapid growing stage and decelerated growing stage with further analysis of its characteristic parameters. The time to maximum rate (Tm), the initiation time and ending time of rapid growing stage showed different degrees of advance with increasing plant density. The duration (Td) and accumulation radio (Ra) of rapid growing stage increased significantly under the condition of high density (D3, D4). Path analysis indicated that Td or Rasignificantly correlated with DMA (0.6500*, 0.7758**), the direct path coefficient of Ra was 1.7097 and its regression contribution also reached 1.3264. The density-tolerance in different plant types was manifested as Piping (K326) > Drum (NC71) > Tower (Yunyan 97), with the suitable planting density of 18 510 (D4) plant ha–1, 16 660 (D3) plant ha–1 and 15 150 (D2) – 16 660 (D3) plant ha–1,respectively.

Key words: Flue-cured tobacco, Plant types, Density, Dry matter accumulation, MMF simulation model

[1]张明达, 李蒙, 胡雪琼, 李晓燕, 朱勇. 基于辐热积法模拟烤烟叶面积与烟叶干物质产量. 生态学报, 2013, 33: 7108–7115
Zhang M D, Li M, Hu X Q, Li X Y, Zhu Y. Simulation of leaf area and dry matter production of tobacco leaves based on product of thermal effectiveness and photosynthetically active radiation. Acta Ecol Sin, 2013, 33: 7108–7115 (in Chinese with English abstract)
[2]王三根, 张建奎. 山地烟叶的生理特性与栽培调控. 北京: 科学出版社, 2014. pp 42–63, 235–279
Wang S G, Zhang J K. Physiological Characteristics and Cultivation Regulation of Mountain Tobacco. Beijing: Science Press, 2014. pp 42–63, 235–279 (in Chinese)
[3]张永丽, 肖凯, 李雁鸣. 种植密度对杂种小麦C6-38/Py85-1旗叶光合特性和产量的调控效应及其生理机制. 作物学报, 2005, 31: 498–505
Zhang Y L, Xiao K, Li Y M. Effects and physiological mechanism of planting densities on photosynthesis characteristics of flag leaf and grain yield in wheat hybrid C6-38/Py85-1. Acta Agron Sin, 2005, 31: 498–505 (in Chinese with English abstract)
[4]张广富, 赵铭钦, 王冬, 赵进恒, 叶金果, 拓阳阳. 不同种植密度烤烟净光合速率日变化与生理生态因子的关系. 中国烟草学报, 2011, 17(1): 54–61
Zhang G F, Zhao M Q, Wang D, Zhao J H, Ye J G, Tuo Y Y. Relationship between diurnal changes of net photosynthetic rate and physio-ecological factors in flue-cured tobacco in different planting densities. Acta Tab Sin, 2011, 17(1): 54–61 (in Chinese with English abstract)
[5]骆兰平, 于振文, 王东, 张永丽, 石玉. 土壤水分和种植密度对小麦旗叶光合性能和干物质积累与分配的影响. 作物学报, 2011, 37: 1049–1059
Luo L P, Yu Z W, Wang D, Zhang Y L, Shi Y. Effects of planting density and soil moisture on flag leaf photosynthetic characteristics and dry matter accumulation and distribution in wheat. Acta Agron Sin, 2011, 37: 1049–1059 (in Chinese with English abstract)
[6]张明, 宋振伟, 陈涛, 闫孝贡, 朱平, 任军, 邓艾兴, 张卫建. 不同春玉米品种干物质生产和子粒灌浆对种植密度的响应. 玉米科学, 2015, 23(3): 57–65
Zhang M, Song Z W, Chen T, Yan X G, Zhu P, Ren J, Deng A X, Zhang W J. Differences in responses of biomass production and grain-filling to planting density between spring maize cultivars. J Maize Sci, 2015, 23(3): 57–65 (in Chinese with English abstract)
[7]Dai J, Li W, Tang W, Zhan D M, Li Z H, Lu H Q, Eneji A E, Dong H Z. Manipulation of dry matter accumulation and partitioning with plant density in relation to yield stability of cotton under intensive management. Field Crop Res, 2015, 180: 207–215
[8]刘伟, 张吉旺, 吕鹏, 杨今胜, 刘鹏, 董树亭, 李登海, 孙庆泉. 种植密度对高产夏玉米登海661产量及干物质积累与分配的影响. 作物学报, 2011, 37: 1301–1307
Liu W, Zhang J W, Lv P, Yang J S, Liu P, Dong S T, Li D H, Sun Q Q. Effect of plant density on grain yield dry matter accumulation and parti-tioning in summer maize cultivar Denghai 661. Acta Agron Sin, 2011, 37: 1301–1307 (in Chinese with English abstract)
[9]曹志洪. 优质烤烟生产的土壤与施肥. 南京: 江苏科学技术出版社, 1991. pp 3–9
Cao Z H. Soil and Fertilizer Application on the Production of Good Quality Flue-cured Tobacco. Nanjing: Jiangsu Scientific and Technical Publishers, 1991. pp 3–9 (in Chinese)
[10]王瑞, 刘国顺, 倪国仕, 毕庆文, 杨林波, 甄才红. 种植密度对烤烟不同部位叶片光合特性及其同化物积累的影响. 作物学报, 2009, 35: 2288–2295
Wang R, Liu G S, Ni G S, Bi Q W, Yang L B, Zhen C H. Effects of planting density on photosynthetic characteristics and assimilate accumulation of leaves in different positions in flue-cured tobacco. Acta Agron Sin, 2009, 35: 2288–2295 (in Chinese with English abstract)
[11]曹宏鑫, 赵锁劳, 葛道阔, 刘永霞, 刘岩, 孙金英, 岳延滨, 张智优, 陈煜利. 作物模型发展探讨. 中国农业科学, 2011, 44: 3520–3528
Cao H X, Zhao S L, Ge D K, Liu Y X, Liu Y, Sun J Y, Yue Y B, Zhang Z Y, Chen Y L. Discussion on development of crop models. Sci Agric Sin, 2011, 44: 3520–3528 (in Chinese with English abstract)
[12]Persson T, Höglind M, Gustavsson A M, Halling M, Jauhiainen L, Niemeläinen O, Thorvaldsson G, Virkajärvi P. Evaluation of the LINGRA timothy model under Nordic conditions. Field Crop Res, 2014, 161: 87–97
[13]赵姣, 郑志芳, 方艳茹, 周顺利, 廖树华, 王璞. 基于动态模拟模型分析冬小麦干物质积累特征对产量的影响. 作物学报, 2013, 39: 300–308
Zhao J, Zheng Z F, Fang Y R, Zhou S L, Liao S H, Wang P. Effect of dry matter accumulation characteristics on yield of winter wheat analyzed by dynamic simulation model. Acta Agron Sin, 2013, 39: 300–308 (in Chinese with English abstract)
[14]吴玮, 马玉平, 俄有浩, 孙琳丽, 景元书. GECROS模型在黄淮海地区模拟夏玉米生长的适应性评价. 作物学报, 2015, 41: 123–135
Wu W, Ma Y P, E Y H, Sun L L, Jing Y S. Adaptability evaluation of GECROS simulating summer maize growth in the Yellow-Huaihe-Haihe rivers. Acta Agron Sin, 2015, 41: 123–135 (in Chinese with English abstract)
[15]Ojeda J J, Pembleton K G, Islam M R, Agnussdei M G, Garcia S C. Evaluation of the agricultural production systems simulator simulating Lucerne and annual ryegrass dry matter yield in the Argentine Pampas and south-eastern Australia. Agric Syst, 2016, 143: 61–75
[16]Maniruzzaman M, Talukder M S U, Khan M H, Biswas J C, Nemes A. Validation of the AquaCrop model for irrigated rice production under varied water regimes in Bangladesh. Agric Water Manag, 2015, 159: 331–340
[17]Mäkinen H, Kaseva J, Virkajärvi P, Kahiluoto H. Managing resilience of forage crops to climate change through response diversity. Field Crops Res, 2015, 183: 23–30
[18]赵爽, 翟欣, 许自成, 陈雪, 董安玮, 杨双剑, 张玲. 乌蒙烟区气候生态特点分析. 贵州农业科学, 2013, 41(10): 70–73
Zhao S, Zhai X, Xu Z C, Chen X, Dong A W, Yang S J, Zhang L. Climatic and ecological characteristics of Wumeng tobacco-growing area. Guizhou Agric Sci, 2013, 41(10): 70–73 (in Chinese with English abstract)
[19]马国庆, 黄大年, 李丽丽, 于平. 重磁异常解释的归一化局部波数法. 地球物理学报, 2014, 57: 1300–1309
Ma G Q, Huang D N, Li L L, Yu P. A normalized local wavenumber method for interpretation of gravity and magnetic anomalies. Chin J Geophys, 2014, 57: 1300–1309 (in Chinese with English abstract)
[20]李树忱, 冯现大, 李术才, 袁超. 矿井顶板突水模型试验多场信息的归一化处理方法. 煤炭学报, 2011, 36: 447–451
Li S C, Feng X D, Li S C, Li L P, Yuan C. The normalization process of the multi-field information from a coal mine water-inrush model test. J China Coal Soc, 2011, 36: 447–451 (in Chinese with English abstract)
[21]付雪丽, 赵明, 周宝元, 崔国美, 丁在松. 小麦、玉米粒重动态共性特征及其最佳模型的筛选与应用. 作物学报, 2009, 35: 309–316
Fu X L, Zhao M, Zhou B Y, Cui G M, Ding Z S. Optimal model for dynamic characteristics of grain weight commonly used in wheat and maize. Acta Agron Sin, 2009, 35: 309–316 (in Chinese with English abstract)
[22]张宾, 赵明, 董志强, 李建国, 陈传永, 孙锐. 作物高产群体LAI动态模拟模型的建立与检验. 作物学报, 2007, 33: 612–619
Zhang B, Zhao M, Dong Z Q, Li J G, Chen C Y, Sun R. Establishment and test of LAI dynamic simulation model for high yield population. Acta Agron Sin, 2007, 33: 612–619 (in Chinese with English abstract)
[23]Kobayashi K, Salam M U. Comparing simulated and measured values using mean squared deviation and its components. Agron J, 2000, 92: 345–352
[24]纪洪亭, 冯跃华, 何腾兵, 潘剑, 范乐乐, 李云, 武彪, 肖铭, 粱显林. 超级杂交稻群体干物质和养分积累动态模型与特征分析. 中国农业科学, 2012, 45: 3709–3720
Ji H T, Feng Y H, He T B, Pan J, Fan L L, Li Y, Wu B, Xiao M, Liang X L. A dynamic model of dry matter and nutrient accumulation in super hybrid rice and analysis of its characteristics. Sci Agric Sin, 2012, 45: 3709–3720 (in Chinese with English abstract)
[25]王军保, 刘新荣, 李鹏, 郭建强. MMF模型在采空区地表沉降预测中的应用. 煤炭学报, 2012, 37: 411–415
Wang J B, Liu X R, Li P, Guo J Q. Study on prediction of surface subsidence in mined-out region with the MMF model. J China Coal Soc, 2012, 37: 411–415 (in Chinese with English abstract)
[26]曹卫星. 作物栽培学总论. 北京: 科学出版社, 2011. pp 48–50
Cao W X. Introduction to Crop Cultivation, 2nd edn. Beijing: Science Press, 2011. pp 48–50 (in Chinese)
[27]Morgan R P C, Quinton J N, Smith R E, et al. The european soil erosion model (eurosem): a dynamic approach for predicting sediment transport from fields and small catchment. Earth Surf Proc Land, 1998, 23: 527–544
[28]熊伟, 林而达, 杨婕, 李迎春. 作物模型区域应用两种参数校准方法的比较. 生态学报, 2008, 28: 2140–2147
Xiong W, Lin E D, Yang J, Li Y C. Comparison of two calibration approaches for regional simulation of crop model. Acta Ecol Sin, 2008, 28: 2140–2147 (in Chinese with English abstract)
[29]李国强, 汤亮, 张文宇, 曹卫星, 朱艳. 不同株型小麦干物质积累与分配对氮肥响应的动态分析. 作物学报, 2009, 35: 2258–2265
Li G Q, Tang L, Zhang W Y, Cao W X, Zhu Y. Dynamic analysis on response of dry matter accumulation and partitioning to nitrogen fertilizer in wheat cultivars with different plant types. Acta Agron Sin, 2009, 35: 2258–2265 (in Chinese with English abstract)
[30]邓飞, 王丽, 刘利, 刘代银, 任万军, 杨文钰. 不同生态条件下栽培方式对水稻干物质生产和产量的影响. 作物学报, 2012, 38: 1930–1942
Deng F, Wang L, Liu L, Liu D Y, Ren W J, Yang W Y. Effects of cultivation methods on dry matter production and yield of rice under different ecological conditions. Acta Agron Sin, 2012, 38: 1930–1942 (in Chinese with English abstract)
[31]张喜峰, 张立新, 高梅, 李云飞, 翟优雅, 韦成才, 马英明, 陈明山, 黄金辉. 密度与氮肥互作对烤烟氮钾含量、光合特性及产量的影响. 中国土壤与肥料, 2013, (2): 32–36
Zhang X F, Zhang L X, Gao M, Li Y F, Zhai Y Y, Wei C C, Ma Y M, Chen M S, Huang J H. Effects of interaction between nitrogen application rate and planting density on nitrogen and potassium contents, photosynthesis characteristics and yield of flue-cured tobacco. China Soils Fert, 2013, (2): 32–36 (in Chinese with English abstract)
[32]王存凯, 陈鹏飞, 陶洪斌, 孟祥盟, 刘慧涛, 刘武仁, 王璞, 廖树华. 玉米产量潜力及超高产物质积累途径优化分析方法. 中国生态农业学报, 2014, 22: 1414–1423
Wang C K, Chen P F, Tao H B, Meng X M, Liu H T, Liu W R, Wang P, Liao S H. Optimized FAO-AEZ model for estimation of maize yield potential and dry matter accumulation for super-high yield cultivation. Chin J Eco Agric, 2014, 22: 1414–1423 (in Chinese with English abstract)
[33]黄振喜, 王永军, 王空军, 李登海, 赵明, 柳京国, 董树亭, 王洪军, 王军海, 杨今胜. 产量15000 kg hm–2以上夏玉米灌浆期间的光合特性. 中国农业科学, 2007, 40: 1898–1906
Huang Z X, Wang Y J, Wang K J, Li D H, Zhao M, Liu J G, Dong S T, Wang H J, Wang J H, Yang J S. Photosynthetic characteristics during grain filling stage of summer maize hybrids with high yield potential of 15000 kg hm–2. Sci Agric Sin, 2007, 40: 1898–1906 (in Chinese with English abstract)
[34]宋珍霞, 高明, 关博谦, 许安定, 代先强. 硼对烤烟干物质积累和养分吸收的动态模拟. 植物营养与肥料学报, 2006, 12: 565–570
Song Z X, Gao M, Guan B Q, Xu D A, Dai X Q. Simulating the dynamics of dry matter and nutrient accumulation of flue-cured tobacco under different boron concentration. Plant Nutr Fert Sci, 2006, 12: 565–570 (in Chinese with English abstract)
[35]黄冲平, 王爱华, 胡秉民. 马铃薯生育期和干物质积累的动态模拟研究. 生物数学学报, 2003, 18: 314–320
Huang C P, Wang A H, Hu B M. Study on the simulation of potato phenology development and dry-matter accumulation. J Biomath, 2003, 18: 314–320 (in Chinese with English abstract)
[36]刘娟, 熊淑萍, 杨阳, 翟清云, 王严峰, 王静, 马新明. 基于归一化法的小麦干物质积累动态预测模型. 生态学报, 2012, 32: 5512–5520
Liu J, Xiong S P, Yang Y, Zhai Q Y, Wang Y F, Wang J, Ma X M. A model to predict dry matter accumulation dynamics in wheat based on the normalized method. Acta Ecol Sin, 2012, 32: 5512–5520 (in Chinese with English abstract)
[37]李向岭, 赵明, 李从锋, 葛均筑, 侯海鹏, 李琦, 侯立白. 播期和密度对玉米干物质积累动态的影响及其模型的建立. 作物学报, 2010, 36: 2143–2153
Li X L, Zhao M, Li C F, Ge J Z, Hou H P, Li Q, Hou L B. Effect of sowing-date and planting density on dry matter accumulation dynamic and establishment of its simulated model in maize. Acta Agron Sin, 2010, 36: 2143–2153 (in Chinese with English abstract)

[1] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[2] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[3] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[4] 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740.
[5] 陈云, 刘昆, 张宏路, 李思宇, 张亚军, 韦佳利, 张耗, 顾骏飞, 刘立军, 杨建昌. 机插密度和穗肥减量对优质食味水稻品种籽粒淀粉合成的影响[J]. 作物学报, 2021, 47(8): 1540-1550.
[6] 郑迎霞, 陈杜, 魏鹏程, 卢平, 杨锦越, 罗上轲, 叶开梅, 宋碧. 种植密度对贵州春玉米茎秆抗倒伏性能及籽粒产量的影响[J]. 作物学报, 2021, 47(4): 738-751.
[7] 韦还和, 张徐彬, 葛佳琳, 孟天瑶, 陆钰, 李心月, 陶源, 丁恩浩, 陈英龙, 戴其根. 甬优籼粳杂交稻栽后地上部干物质积累动态与特征分析[J]. 作物学报, 2021, 47(3): 546-555.
[8] 柳燕兰, 郭贤仕, 张绪成, 马明生, 王宏康. 密度和施肥对旱地马铃薯干物质积累、产量和水肥利用的影响[J]. 作物学报, 2021, 47(2): 320-331.
[9] 董二伟, 王劲松, 武爱莲, 王媛, 王立革, 韩雄, 郭珺, 焦晓燕. 行距和密度对高粱籽粒灌浆、淀粉及氮磷钾累积特征的影响[J]. 作物学报, 2021, 47(12): 2459-2470.
[10] 张金丹, 范虹, 杜进勇, 殷文, 樊志龙, 胡发龙, 柴强. 小麦玉米同步增密有利于优化种间关系而提高间作产量[J]. 作物学报, 2021, 47(12): 2481-2489.
[11] 王飞, 郭彬彬, 孙增光, 尹飞, 刘领, 焦念元, 付国占. 增温增CO2浓度对玉米||花生体系玉米生长发育及产量的影响[J]. 作物学报, 2021, 47(11): 2220-2231.
[12] 任媛媛, 张莉, 郁耀闯, 张彦军, 张岁岐. 大豆种植密度对玉米/大豆间作系统产量形成的竞争效应分析[J]. 作物学报, 2021, 47(10): 1978-1987.
[13] 刘青丽,蒋雨洲,邹焱,张云贵,张恒,石俊雄,李志宏. 烟田生态系统碳收支研究[J]. 作物学报, 2020, 46(8): 1258-1265.
[14] 于宁宁,张吉旺,任佰朝,赵斌,刘鹏. 综合农艺管理对夏玉米叶片生长发育及内源激素含量的影响[J]. 作物学报, 2020, 46(6): 960-967.
[15] 赵小红,白羿雄,王凯,姚有华,姚晓华,吴昆仑. 种植密度对2个青稞品种抗倒伏及秸秆饲用特性的影响[J]. 作物学报, 2020, 46(4): 586-595.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!