欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (03): 454-463.doi: 10.3724/SP.J.1006.2017.00454

• 研究简报 • 上一篇    下一篇

低温胁迫下马铃薯的数字基因表达谱分析

杨慧菊,郭华春*   

  1. 云南农业大学农学与生物技术学院薯类作物研究所,云南昆明 650201
  • 收稿日期:2016-07-06 修回日期:2016-11-02 出版日期:2017-03-12 网络出版日期:2016-11-18
  • 通讯作者: 郭华春,E-mail: ynghc@126.com;Tel: 0871-65227728
  • 基金资助:

    本研究由国家自然科学基金项目(C130407), 国家现代农业产业技术体系建设专项(GARS-10)和云南省重大科技专项(2013ZA007)项目资助。

Digital Gene Expression Profiling Analysis of Potato Under Low Temperature Stress

YANG Hui-Ju,GUO Hua-Chun*   

  1. Tuber-Root Crops Research Institute, College of Agronomy and Biotechnology, Yunnan Agriculture University, Kunming650201, China
  • Received:2016-07-06 Revised:2016-11-02 Published:2017-03-12 Published online:2016-11-18
  • Contact: 郭华春,E-mail: ynghc@126.com;Tel: 0871-65227728
  • Supported by:

    This study was supported by the National Natural Science Foundation of China(C130407), the China Agriculture Research System(GARS-10) and Specialized Research Fund for science and technology projects of Yunnan province(2013ZA007).

摘要:

以马铃薯品种合作88为材料,利用数字基因表达谱(DGE)技术,对–2℃低温胁迫处理后的马铃薯叶片cDNA文库进行差异基因表达谱分析。结果表明,有28505个基因受低温胁迫诱导差异表达,其中上调表达基因13703个,下调表达基因14802个。GO功能显著性富集分析表明,DEGs主要涉及信号生物代谢过程、氧化还原过程、能量代谢、次生代谢过程以及催化活性。KEGG富集分析表明,上调表达基因主要富集于苯丙烷、光合作用天线蛋白、类胡萝卜素的生物合成、苯丙氨酸代谢及淀粉与蔗糖代谢途径,而下调表达基因主要富集于植物激信号转导途径。利用实时荧光定量PCR(qRT-PCR)验证4DEGs在低温胁迫条件下的差异表达,其结果与DGE分析结果基本一致,证实了DGE测序结果的可靠性。

关键词: 马铃薯, 低温胁迫, 基因表达谱, 差异表达基因

Abstract:

Avariety Cooperation88was used to construct leaf cDNA library of potato treated with –2℃ low temperature stress by digital gene expression profiling (DGE) technology, and detect the differentially expressed genes(DEGs).The results of solexasequencing showed that a total of 28505 DEGs were screened out, 13703 DEGs of whichwere up-regulated and 14802 DEGs were down-regulated. GO enrichment analysis showed that these DEGs were involved insingle-organism metabolic process, oxidation-reduction process, metabolisms of carbohydrate, secondary metabolism and catalytic activity. The KEGGenrichment analysis showed that up-regulated genes were significantly associated withphenylpropanoid, photosynthesis-antennaproteins, carotenoidbiosynthesis, phenylalaninemetabolism, starch and sucrose metabolism pathways, while the down-regulated DEGs mainly enriched in plant hormone signal transduction pathway. The differential expressions of four genes were confirmed by Real-time quantitative PCR, showing that theexpression changes ofthese four genes weregenerally consistent with the results of DGE.

Key words: Potato, Low temperature stress, Gene expression profile, Differentially expressed genes

[1]Boyer J S. Plant productivity and environment. Science, 1982, 218: 443–448
[2]张珍. 马铃薯早熟防寒栽培技术. 河南农业, 2013, (3): 46
Zhang Z.Early winter cultivation techniques of potato. AgricHenan, 2013, (5): 46 (in Chinese with English abstract)
[3]ChenY K, Bamberg J B, Palta J P. Expression of freezing tolerance in the interspecific F1 and somatic hybrids of potatoes. Theor Appl Genet, 1999, 98: 995–1004
[4]Hijmans R J. Estimating frost risk in potato production on the Altiplano using interpolated climate data: CIP program report. Lima, International Potato Center, 1999.pp 373–380
[5]Van Swaaij A C, Jacobscn E, Fccnstra W J. Effect of cold hardening, wilting and exogenously applied proline on leaf proline content and frost tolerance of several genotypes of Solanum. Physiol Plant, 1985, 64: 230–236
[6]Chen T H H, Gusta L V. Abscisic acid-induced freezing resistance in cultured plant cells. Plant Physiol, 1983, 73, 71–75
[7]Wallis J G, Wang H, Guerra D J. Expression of a synthetic antifreeze protein in potato reduces electrolyte release at freezing temperatures. Plant Mol Biol, 1997, 35, 323–330
[8]Pino M T, Skinner J S, Park E J, Jeknic Z, Hayes P M., Thomashow M F, Chen T H H. Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield. Plant Biotechnol J, 2007, 5, 591–604
[9]Pino M T, Skinner J S, Jeknic Z, Hayes P M, Soeldner A H, Thomashow M F, Chen T H H. Ectopic AtCBF1 over-expression enhances freezing tolerance and induces cold acclimation-associated physiological modifications in potato. Plant CellEnviron, 2008, 31: 393–406
[10]Li T, Kim M D, Yang K S, Kwon S Y, Kim S H, Kim J S, Yun D J, Kwak S S, Lee H S. Enhanced tolerance of transgenic potato plants overexpressing nucleoside diphosphate kinase 2 against multiple environmental stresses. Transgenic Res, 2008, 17, 705–715
[11]周华, 张新, 刘腾云, 余发新. 高通量转录组测序的数据分析与基因发掘. 江西科学, 2012, 30: 608–611
Zhou H, Zhang X, Liu T Y, Yu F X. Data processing and gene discovery of high-throughput transcriptome sequencing. Jiangxi Sci, 2012, 30, 608–611 (in Chinese with English abstract)
[12]Kakumanu A, Ambavaram M M R, Klumas C, Krishnan A, Batlang U, Myers E, Grene R, Pereira A. Effects of drought on gene expression in maize reproductive and leaf meristem tissue revealed by RNA-Seq.Plant Physiol, 2012, 160: 846–867
[13]Vidal R O, do Nascimento L C, Mondego J M C, Pereira G A G, Carazzolle M F. Identification of SNPs in RNA-seq data of two cultivars of Glycine max (soybean) differing in drought resistance. Genet Mol Biol, 2012, 35: 331–334
[14]卢坤, 张琳, 曲存民, 梁颖, 唐章林, 李加纳. 利用RNA-Seq鉴定甘蓝型油菜叶片干旱胁迫应答基因. 中国农业科学, 2015, 48: 630–645
Lu K, Zhang L, Qu C M, Liang Y, Tang Z L, Li J N. Identification of drought stress-responsive genes in leaves of Brassica napus by RNA sequencing.Sci Agric Sin, 2015, 48: 630–645 (in Chinese with English abstract)
[15]孙爱清, 张杰道, 万勇善, 刘风珍, 张昆, 孙利. 花生干旱胁迫响应基因的数字表达谱分析. 作物学报, 2013, 39: 1045–1053
Sun A Q, Zhang J D, Wan Y S, Liu F Z, Zhang K, Sun L. in silico expression profile of genes in response to drought in peanut. Acta Agron Sin, 2013, 39: 1045–1053 (in Chinese with English abstract)
[16]牙库甫江•阿西木, 关波, 张富春. 植物基因表达转录分析中内参基因的选择与应用. 生物技术通报, 2011, (7): 7–11
Yakupjan H X M, Guan B, Zhang F C. Research progress in plant reference genes. Biotechnol Bull, 2011, (7): 7–11 (in Chinese with English abstract)
[17]许英, 陈建华, 朱爱国, 奕明宝, 王晓飞, 孙志民. 低温胁迫下植物响应机理的研究进展. 中国麻业科学, 2015, 37(1): 40–49
Xu Y, Chen J H, Zhu A G, Luan M B, Wang X F, Sun Z M. Research progress on response mechanism of plant under low temperature stress. Plant Fiber Sci China, 2015, 37(1): 40–49 (in Chinese with English abstract)
[18]刘辉, 李德军, 邓治. 植物应答低温胁迫的转录调控网络研究进展. 中国农业科学, 2014, 47: 3523–3533
Liu H, Li D J, Deng Z. Advances in research of transcriptional regulatory network in response to cold stress in plants. Sci Agric Sin, 2014, 47: 3523–3533 (in Chinese with English abstract)
[19]祁云霞, 刘永斌, 荣威恒.  转录组研究新技术: RNA-Seq及其应用. 遗传, 2011: 1191–1202
Qi Y X, Liu Y B, R ong W H. RNA-Seq and its applications: a new technology for transcriptomics. Hereditas, 2011: 1191–1202 (in Chinese with English abstract)
[20]胡红柳, 侯晓明, 曲波, 高学军, 李庆章. 高通量基因表达谱的应用. 中国乳品工业, 2012, 40(12): 40–43
Hu H L, Hou X M, Qu B, Gao X J, Li Q Z. Application of high throughput gene expression profiling. China Dairy Ind, 2012, 40(12): 40–43 (in Chinese with English abstract)
[21]杨伟, 龚荣高, 石佳佳, 赖静, 廖明安, 梁国鲁. 低温胁迫下枇杷幼果转录组的De novo组装和功能注释. 西北农林科技大学学报(自然科学版), 2014, 42(8): 138–146
Yang W, Gong R G, Shi J J, Lai J, Liao M A, Liang G L. De novo assembly and functional annotation of the loquat young fruit transcriptome under chilling stress. J Northwest A&F Univ (Nat Sci Edn), 2014, 42(8): 138–146 (in Chinese with English abstract)
[22]Chen T, Li P H. Biochemical changes in tuber-bearing Solanmn species in relation to frost hardiness during cold acclimation. Plant Physiol, 1980, 66: 414–421
[23]Zheng M, Wang Y, Liu K, Shu H, Zhou Z. Protein expression changes during cotton fiber elongation in response to low temperature stress. J Plant Physiol, 2012, 169: 399–409
[24]Evers D, Legay S, Lamoureux D, Hausman J F, Hoffmann L, Renaut J. Towards a synthetic view of potato cold and salt stress response by transcriptomic and proteomic analyses. Plant Mol Biol, 2012, 78: 503–514
[25]秦玉芝, 陈珏, 邢铮, 何长征, 熊兴耀. 低温逆境对马铃薯叶片光合作用的影响. 湖南农业大学学报(自然科学版), 2013, 39(1): 26–30
Qin Y Z, Chen J, Xing Z, He C Z, Xiong X Y. Effects of low temperature stress on photosynthesis in potato leaves. J Hunan Agric Univ (NatSci), 2013, 39(1): 26–30 (in Chinese with English abstract)
[26]Niyogi K K. Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 333–359
[27]Sun X, Tan Q, Nie Z, Hu C, An Y. Differential expression of proteins in response to molybdenum deficiency in winter wheat leaves under low-temperature stress.Plant Mol Biol Rep, 2014, 32:1057–1069
[28]Andreas T, Christophe C, Essaǐd A B. Physiological and molecular changes in plants grown at low temperatures. Planta, 2012, 235: 1091–1105
[29]Bhardwaj A R, Joshi G, Kukreja B, Malik V, Arora P, Pandey R, Shukla R N, Bankar K G, Agarwal S K, Goel S, Jagannath A, Kumar A, Agarwal M. Global insights into high temperature and drought stress regulated genes by RNA-Seq in economically important oilseed crop Brassica juncea. BMC Plant Biol, 2015, 15:1–15
[30]刘蕾, 杜海, 唐晓凤, 吴燕民,黄玉碧, 唐益雄. MYB转录因子在植物抗逆胁迫中的作用及其分子机理. 遗传, 2008, 30: 1265–1271
Liu L, Du H, Tang X F, Wu Y M, Huang Y B, Tang Y X. The roles of MYB transcription factors on plant defense responses and its molecular mechanism. Hereditas, 2008, 30: 1265–1271 (in Chinese with English abstract)
[31]李余良, 刘建华, 郑锦荣, 胡建广. 高温胁迫下甜玉米雌穗发育基因差异表达谱分析. 作物学报, 2013, 39: 269–279
Li Y L, Liu J H, Zheng J R, Hu J G. Gene expression profile of sweet corn ears under heat stress. Acta Agron Sin, 2013, 39: 269–279 (in Chinese with English abstract)
[32]Xu W, Li R, Zhang N, Ma F, Jiao Y T, Wang Z P. Transcriptome profiling of Vitis amurensis, an extremely cold-tolerant Chinese wild Vitis, species, reveals candidate genes and events that potentially connected to cold stress. Plant Mol Biol, 2014, 86:527–541
[33]唐寅, 张威威, 许锋, 程水源. 植物苯丙氨酸代谢相关酶基因启动子研究进展. 长江大学学报(自然科学版), 2010, 7(2): 68–71
Tang Y, Zhang W W, Xu F, Cheng S Y. The research progress of plant phenylalanine metabolism related enzyme gene promoter. J Yangtze Univ (NatSci Edn), 2010, 7(2): 68–71 (in Chinese with English abstract)

[1] 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278.
[2] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[3] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[4] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[5] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[6] 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694.
[7] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[8] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[9] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[10] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[11] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[12] 黄文功, 姜卫东, 姚玉波, 宋喜霞, 刘岩, 陈思, 赵东升, 吴广文, 袁红梅, 任传英, 孙中义, 吴建忠, 康庆华. 亚麻响应低钾胁迫转录谱分析[J]. 作物学报, 2021, 47(6): 1070-1081.
[13] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[14] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612.
[15] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!