[1]Boyer J S. Plant productivity and environment. Science, 1982, 218: 443–448
[2]张珍. 马铃薯早熟防寒栽培技术. 河南农业, 2013, (3): 46
Zhang Z.Early winter cultivation techniques of potato. AgricHenan, 2013, (5): 46 (in Chinese with English abstract)
[3]ChenY K, Bamberg J B, Palta J P. Expression of freezing tolerance in the interspecific F1 and somatic hybrids of potatoes. Theor Appl Genet, 1999, 98: 995–1004
[4]Hijmans R J. Estimating frost risk in potato production on the Altiplano using interpolated climate data: CIP program report. Lima, International Potato Center, 1999.pp 373–380
[5]Van Swaaij A C, Jacobscn E, Fccnstra W J. Effect of cold hardening, wilting and exogenously applied proline on leaf proline content and frost tolerance of several genotypes of Solanum. Physiol Plant, 1985, 64: 230–236
[6]Chen T H H, Gusta L V. Abscisic acid-induced freezing resistance in cultured plant cells. Plant Physiol, 1983, 73, 71–75
[7]Wallis J G, Wang H, Guerra D J. Expression of a synthetic antifreeze protein in potato reduces electrolyte release at freezing temperatures. Plant Mol Biol, 1997, 35, 323–330
[8]Pino M T, Skinner J S, Park E J, Jeknic Z, Hayes P M., Thomashow M F, Chen T H H. Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield. Plant Biotechnol J, 2007, 5, 591–604
[9]Pino M T, Skinner J S, Jeknic Z, Hayes P M, Soeldner A H, Thomashow M F, Chen T H H. Ectopic AtCBF1 over-expression enhances freezing tolerance and induces cold acclimation-associated physiological modifications in potato. Plant CellEnviron, 2008, 31: 393–406
[10]Li T, Kim M D, Yang K S, Kwon S Y, Kim S H, Kim J S, Yun D J, Kwak S S, Lee H S. Enhanced tolerance of transgenic potato plants overexpressing nucleoside diphosphate kinase 2 against multiple environmental stresses. Transgenic Res, 2008, 17, 705–715
[11]周华, 张新, 刘腾云, 余发新. 高通量转录组测序的数据分析与基因发掘. 江西科学, 2012, 30: 608–611
Zhou H, Zhang X, Liu T Y, Yu F X. Data processing and gene discovery of high-throughput transcriptome sequencing. Jiangxi Sci, 2012, 30, 608–611 (in Chinese with English abstract)
[12]Kakumanu A, Ambavaram M M R, Klumas C, Krishnan A, Batlang U, Myers E, Grene R, Pereira A. Effects of drought on gene expression in maize reproductive and leaf meristem tissue revealed by RNA-Seq.Plant Physiol, 2012, 160: 846–867
[13]Vidal R O, do Nascimento L C, Mondego J M C, Pereira G A G, Carazzolle M F. Identification of SNPs in RNA-seq data of two cultivars of Glycine max (soybean) differing in drought resistance. Genet Mol Biol, 2012, 35: 331–334
[14]卢坤, 张琳, 曲存民, 梁颖, 唐章林, 李加纳. 利用RNA-Seq鉴定甘蓝型油菜叶片干旱胁迫应答基因. 中国农业科学, 2015, 48: 630–645
Lu K, Zhang L, Qu C M, Liang Y, Tang Z L, Li J N. Identification of drought stress-responsive genes in leaves of Brassica napus by RNA sequencing.Sci Agric Sin, 2015, 48: 630–645 (in Chinese with English abstract)
[15]孙爱清, 张杰道, 万勇善, 刘风珍, 张昆, 孙利. 花生干旱胁迫响应基因的数字表达谱分析. 作物学报, 2013, 39: 1045–1053
Sun A Q, Zhang J D, Wan Y S, Liu F Z, Zhang K, Sun L. in silico expression profile of genes in response to drought in peanut. Acta Agron Sin, 2013, 39: 1045–1053 (in Chinese with English abstract)
[16]牙库甫江•阿西木, 关波, 张富春. 植物基因表达转录分析中内参基因的选择与应用. 生物技术通报, 2011, (7): 7–11
Yakupjan H X M, Guan B, Zhang F C. Research progress in plant reference genes. Biotechnol Bull, 2011, (7): 7–11 (in Chinese with English abstract)
[17]许英, 陈建华, 朱爱国, 奕明宝, 王晓飞, 孙志民. 低温胁迫下植物响应机理的研究进展. 中国麻业科学, 2015, 37(1): 40–49
Xu Y, Chen J H, Zhu A G, Luan M B, Wang X F, Sun Z M. Research progress on response mechanism of plant under low temperature stress. Plant Fiber Sci China, 2015, 37(1): 40–49 (in Chinese with English abstract)
[18]刘辉, 李德军, 邓治. 植物应答低温胁迫的转录调控网络研究进展. 中国农业科学, 2014, 47: 3523–3533
Liu H, Li D J, Deng Z. Advances in research of transcriptional regulatory network in response to cold stress in plants. Sci Agric Sin, 2014, 47: 3523–3533 (in Chinese with English abstract)
[19]祁云霞, 刘永斌, 荣威恒. 转录组研究新技术: RNA-Seq及其应用. 遗传, 2011: 1191–1202
Qi Y X, Liu Y B, R ong W H. RNA-Seq and its applications: a new technology for transcriptomics. Hereditas, 2011: 1191–1202 (in Chinese with English abstract)
[20]胡红柳, 侯晓明, 曲波, 高学军, 李庆章. 高通量基因表达谱的应用. 中国乳品工业, 2012, 40(12): 40–43
Hu H L, Hou X M, Qu B, Gao X J, Li Q Z. Application of high throughput gene expression profiling. China Dairy Ind, 2012, 40(12): 40–43 (in Chinese with English abstract)
[21]杨伟, 龚荣高, 石佳佳, 赖静, 廖明安, 梁国鲁. 低温胁迫下枇杷幼果转录组的De novo组装和功能注释. 西北农林科技大学学报(自然科学版), 2014, 42(8): 138–146
Yang W, Gong R G, Shi J J, Lai J, Liao M A, Liang G L. De novo assembly and functional annotation of the loquat young fruit transcriptome under chilling stress. J Northwest A&F Univ (Nat Sci Edn), 2014, 42(8): 138–146 (in Chinese with English abstract)
[22]Chen T, Li P H. Biochemical changes in tuber-bearing Solanmn species in relation to frost hardiness during cold acclimation. Plant Physiol, 1980, 66: 414–421
[23]Zheng M, Wang Y, Liu K, Shu H, Zhou Z. Protein expression changes during cotton fiber elongation in response to low temperature stress. J Plant Physiol, 2012, 169: 399–409
[24]Evers D, Legay S, Lamoureux D, Hausman J F, Hoffmann L, Renaut J. Towards a synthetic view of potato cold and salt stress response by transcriptomic and proteomic analyses. Plant Mol Biol, 2012, 78: 503–514
[25]秦玉芝, 陈珏, 邢铮, 何长征, 熊兴耀. 低温逆境对马铃薯叶片光合作用的影响. 湖南农业大学学报(自然科学版), 2013, 39(1): 26–30
Qin Y Z, Chen J, Xing Z, He C Z, Xiong X Y. Effects of low temperature stress on photosynthesis in potato leaves. J Hunan Agric Univ (NatSci), 2013, 39(1): 26–30 (in Chinese with English abstract)
[26]Niyogi K K. Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 333–359
[27]Sun X, Tan Q, Nie Z, Hu C, An Y. Differential expression of proteins in response to molybdenum deficiency in winter wheat leaves under low-temperature stress.Plant Mol Biol Rep, 2014, 32:1057–1069
[28]Andreas T, Christophe C, Essaǐd A B. Physiological and molecular changes in plants grown at low temperatures. Planta, 2012, 235: 1091–1105
[29]Bhardwaj A R, Joshi G, Kukreja B, Malik V, Arora P, Pandey R, Shukla R N, Bankar K G, Agarwal S K, Goel S, Jagannath A, Kumar A, Agarwal M. Global insights into high temperature and drought stress regulated genes by RNA-Seq in economically important oilseed crop Brassica juncea. BMC Plant Biol, 2015, 15:1–15
[30]刘蕾, 杜海, 唐晓凤, 吴燕民,黄玉碧, 唐益雄. MYB转录因子在植物抗逆胁迫中的作用及其分子机理. 遗传, 2008, 30: 1265–1271
Liu L, Du H, Tang X F, Wu Y M, Huang Y B, Tang Y X. The roles of MYB transcription factors on plant defense responses and its molecular mechanism. Hereditas, 2008, 30: 1265–1271 (in Chinese with English abstract)
[31]李余良, 刘建华, 郑锦荣, 胡建广. 高温胁迫下甜玉米雌穗发育基因差异表达谱分析. 作物学报, 2013, 39: 269–279
Li Y L, Liu J H, Zheng J R, Hu J G. Gene expression profile of sweet corn ears under heat stress. Acta Agron Sin, 2013, 39: 269–279 (in Chinese with English abstract)
[32]Xu W, Li R, Zhang N, Ma F, Jiao Y T, Wang Z P. Transcriptome profiling of Vitis amurensis, an extremely cold-tolerant Chinese wild Vitis, species, reveals candidate genes and events that potentially connected to cold stress. Plant Mol Biol, 2014, 86:527–541
[33]唐寅, 张威威, 许锋, 程水源. 植物苯丙氨酸代谢相关酶基因启动子研究进展. 长江大学学报(自然科学版), 2010, 7(2): 68–71
Tang Y, Zhang W W, Xu F, Cheng S Y. The research progress of plant phenylalanine metabolism related enzyme gene promoter. J Yangtze Univ (NatSci Edn), 2010, 7(2): 68–71 (in Chinese with English abstract) |