欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (06): 795-810.doi: 10.3724/SP.J.1006.2017.00795

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻重测序核心种质资源的稻瘟病抗性鉴定与评价

李旭升1,**,向小娇2,**,申聪聪2,杨隆维1,*,陈凯2,3,王小文1,邱先进1,朱小源4,邢丹英1,徐建龙2,3,*   

  1. 1长江大学主要粮食作物产业化湖北省协同创新中心,湖北荆州 434025;2中国农业科学院作物科学研究所,北京 100081;3中国农业科学院深圳农业基因研究所,广东深圳 518210;4广东省农业科学院水稻研究所,广东广州 510640
  • 收稿日期:2016-10-06 修回日期:2017-03-02 出版日期:2017-06-12 网络出版日期:2017-03-13
  • 通讯作者: 徐建龙, E-mail: xujlcaas@126.com, Tel: 010-82105854; 杨隆维, E-mail: ylwei1968@126.com
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2014AA10A601),主要粮食作物产业化湖北省协同创新中心开放基金项目(2015MS010, LXT-16-06, LXT-17-02),深圳市孔雀团队计划(20130415095710361),湖北省农业科学院合作项目(2015H200014)和湿地生态与农业利用教育部研究中心开放基金项目(KF201403)资助。

Identification and Evaluation of Blast Resistance for Resequenced Rice Core Collections

LI Xu-Sheng1,**,XIANG Xiao-Jiao2,**,SHEN Cong-Cong2,YANG Long-Wei1,*,CHEN Kai3,WANG Xiao-Wen1,QIU Xian-Jin1,ZHU Xiao-Yuan4,XING Dan-Ying1,XU Jian-Long2,3,*   

  1. 1 Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou 434025, China; 2 Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518210, China; 4Institute of Rice Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
  • Received:2016-10-06 Revised:2017-03-02 Published:2017-06-12 Published online:2017-03-13
  • Contact: Xu Jianlong, E-mail: xujlcaas@126.com, Tel: 010-82105854; Yang Longwei, E-mail: ylwei1968@126.com
  • Supported by:

    This study was supported by National High-Tech Research & Development Plan (863) (2014AA10A601), Open Fund of Hubei Collaborative Innovation Centre for Grain Industry (2015MS010, LXT-16-06, LXT-17-02), the Shenzhen Peacock Plan (20130415095710361), Collaboration Project of Hubei Academy of Agricultural Sciences (2015H200014), and Open Fund of Research Centre of Ministry of Education for Wetland Ecology & Agronomy Application (KF201403).

摘要:

稻瘟病一直是制约水稻产量的重要因素之一,稻瘟病抗源筛选是抗性基因挖掘和抗病育种的基础。本试验利用3000份(简称3K)重测序中的1217份核心种质资源,通过湖北恩施两河和芭蕉两个病圃自然诱发鉴定抗性,结合不发病条件下农艺性状考察和抗病资源的苗期人工接种抗谱测定,综合评价和筛选优异的稻瘟病抗源。自然诱发鉴定结果显示材料间的稻瘟病抗感差异显著,从中共获得144份抗苗瘟、叶瘟和穗瘟的抗病种质。选用稻瘟病综合抗性较好的34份材料以30个不同来源的稻瘟病菌株苗期接种,鉴定显示有17份材料的抗性频率≥70%,抗谱较广。农艺性状考察结果显示,大部分抗病材料植株偏高,单株产量低,农艺性状差。结合病圃鉴定、人工接种鉴定和农艺性状考察,鉴定出IRGA 411-1-6-1F-A、YJ30、金早47、泉珍10号、YN 1353-3、云粳23和IRAT 1047等7份稻瘟病抗性强、抗谱广且农艺性状较好的优异抗源材料,可作为抗源亲本用于稻瘟病抗性基因挖掘和品种抗稻瘟性改良。

关键词: 稻瘟病, 种质资源, 自然诱发, 抗谱, 优异抗源

Abstract:

Rice blast is one of the key factors that restrict rice yield, and screening blast resistance resources is a basis work for mining blast resistance genes and breeding resistant varieties. A set of 1217 accessions selected from 3000 (3K) re-sequenced rice core collection were comprehensively evaluated for blast resistance in two natural disease nurseries at Lianghe and Bajiao in Enshi area and agronomic traits in disease-free field as well as resistance spectrum of resistant accessions at seedling stage. There were significant differences in response of different accessions to rice blast. Among them, a total of 144 accessions with blast resistance at different growing stages were obtained. Thirty-four accessions with relatively high comprehensive blast resistance were inoculated with 30 diverse isolates, showing that 17 accessions with a broad resistance spectrum (≥70%). According to the investigation of agronomic traits, most resistant accessions had high plant height, low grain yield per plant and poor agronomic traits. Finally, seven accessions with high blast resistance, broad resistant spectrum and relatively good agronomic traits were selected, including IRGA 411-1-6-1F-A, YJ 30, Jinzao 47, Quanzhen 10, YN 1353-3, Yunjing 23, and IRAT 1047, were identified. Those resistant accessions can be used in mining resistance gene and variety improvement for blast resistance.

Key words: Rice blast, Germplasm, Natural infestation, Resistance spectrum, Excellent resistance resource

[1] Hwang B K, Koh Y J, Chung H S. Effects of adult-plant resistance on blast severity and yield of rice. Plant Dis, 1987, 71: 1035–1038 [2] Torres C Q, Teng P S. Path coefficient and regression analysis of the effects of leaf and panicle blast on tropical rice yield. Crop Prot, 1993, 12: 296–302 [3] 孙国昌, 杜新法, 陶荣祥, 毛雪琴, 孙漱沅. 水稻稻瘟病防治研究进展和21世纪初研究设想. 植物保护, 2000, 26(1): 33–35 Sun G C, Du X F, Tao R X, Mao X Q, Sun S Y. Progress in controlling rice blast disease and its prospect in early 21st century. Plant Prot, 2000, 26(1): 33–35 (in Chinese) [4] Yu Z H, Mackill D J, Bonman J M, Tanksley S D. Tagging genes for blast resistance in rice via linkage to RFLP markers. Theor Appl Genet, 1991, 81: 471–476 [5] Jia Y, Mcadams S A, Bryan G T, Hershey H P, Valent B. Direct interaction of resistance gene and a virulence gene products confers rice blast resistance. EMBO J, 2000, 19: 4004–4014 [6] Correa Victoria F J, Martinez Racines C P. Genetic structure and virulence diversity of Pyricularia grisea for breeding for rice blast resistance. Arterioscler Thromb Vasc Biol, 1995, 15: 219–-227 [7] Zeigler R S, Cuoc L X, Scott R P, Bernardo M A, Chen D H, Valent B, Nelson R J. The relationship between lineage and virulence in Pyricularia grisea in the Philippines. Phytopathology, 1995, 85: 443–451 [8] Turnbull L A, Levine J M, Fergus A J F, Petermann J S. The pi40 gene for durable resistance to rice blast and molecular analysis of pi40-advanced backcross breeding lines. Phytopathology, 2009, 99: 243–250 [9] Fang X, Zhang Y, Zhang S, Lin J, Wang Y. Using gene silencing technology to create blast resistant rice resources. Agric Sci Technol, 2014, 15: 1109–1112 [10] Tanksley S D, McCouch S R. Seed banks and molecular maps: unlocking genetic potential from the wild. Science, 1997, 277: 1063–1066 [11] 国家水稻数据中心. 稻瘟病主效抗性基因列表[DB/OL]. [2015-04-11]. http://www.ricedata.cn/gene/gene_pi.htm National Data Center of Rice. List of Major Blast Resistance Genes [DB/OL]. [2015-04-11]. http://www.ricedata.cn/gene/gene_pi.htm [12] Liu G, Lu G, Zeng L, Wang G L. Two broad-spectrum blast resistance genes, Pi9(t) and Pi2(t), are physically linked on rice chromosome 6. Mol Genet Genomics, 2002, 267: 472–480 [13] 朱小源, 杨健源, 刘景梅, 司徒志谋, 康金平, 胡学应, 朱敏记, 罗森辉, 杨祁云, 林佩珍, 曾列先, 姜先芽, 陈深. 广东水稻品种抗稻瘟病性分析与利用策略. 广东农业科学, 2006, (5): 34–37 Zhu X Y, Yang J Y, Liu J M, SiTu Z M, Kang J P, Hu X Y, Zhu M J, Luo S H, Yang Q Y, Lin P Z, Zeng L X, Jiang X Y, Chen S. Evaluation on resistance of rice varieties in guangdong to rice blast and strategy for its utilization. Guangdong Agric Sci, 2006, (5): 34–37 (in Chinese with English abstract) [14] 杨健源, 康金平, 黄显良, 姜先芽, 赖添奎, 陈深, 李传瑛, 曾列先, 朱小源. 稻瘟病田间自然诱发病圃的建立及其在抗性鉴定中的应用. 广东农业科学, 2007, (9): 59–61 Yang J Y, Kang J P, Huang X L, Jiang X Y, Lai T K, Chen S, Li C Y, Zeng L X, Zhu X Y. Establishment of natural rice blast nursery and its application on the resistance evaluation of rice varieties. Guangdong Agric Sci, 2007, (9): 59–61 (in Chinese with English abstract) [15] 吴双清, 王林, 卿明凤. 水稻区试品种抗稻瘟病鉴定结果分析. 中国稻米, 2011, 17: 53–55 Wu S Q, Wang L, Qing M F. Identification and analysis of regional tested rice varieties resistant to rice blast. China Rice, 2011, 17: 53–55 (in Chinese) [16] 李求文, 杨隆维, 袁利群, 许敏. 持久抗稻瘟病杂交水稻新三系及组合选育与应用研究进展. 云南农业大学学报, 2006, 21: 276–282 Li Q W, Yang L W, Yuan L Q, Xu M. Breeding and the applied research progress of hybrid Rice of new three line and combination of persistent resistance of blast. J Yunnan Agric Univ, 2006, 21: 276–282 (in Chinese with English abstract) [17] The 3000 rice genomes project. The 3000 rice genomes project. Gigascience, 2014, 3: 7 [18] Li J Y, Wang J, Zeigler R S. The 3000 rice genomes project: new opportunities and challenges for future rice research. Gigascience, 2014, 3: 8 [19] 湖北省质量技术监督局.农作物品种区域试验抗病性鉴定操作规程(DB42/T 208-2001). 湖北省地方标准, 2001年12月12日发布,2002年1月1日实施 Hubei Province Quality and Technology Supervision Bureau. Resistance Identification Procedures of Crop Varieties for Regional Yield Test (DB42/T 208-2001). Hubei Local Standard, released on December 12, 2001 and effective on January 1, 2002 (in Chinese) [20] Bonman J M, Estrada B A, Bandong J M. Leaf and neck blast resistance in tropical lowland rice cultivars. Plant Dis, 1989, 73: 388–390 [21] Zhuang J Y, Ma W B, Wu J L, Chai R Y, Lu J, Fan Y Y, Jin M Z, Leung H, Zheng K L. Mapping of leaf and neck blast resistance genes with resistance gene analog, RAPD and RFLP in rice. Euphytica, 2002, 128: 363–370 [22] 陈福如, 阮宏椿, 杨秀娟, 林时迟, 方琴, 严琰. 稻瘟病苗瘟叶瘟和穗颈瘟的相关性分析. 中国农学通报, 2006, 22: 440–443 (in Chinese with English abstract) Chen F R, Ruan H C, Yang X J, Lin S C, Fang Q, Yan Y. The correlation in seedlingblasts, leaf blasts and neck blasts of rice. Chin Agric Sci Bull, 2006, 22: 440-443 [23] Noenplab A, Vanavichit A, Toojinda T, Sirithunya P, Tragoonrung S, Sriprakhon S, Vongsaprom C. QTL mapping for leaf and neck blast resistance in Khao Dawk Mali105 and Jao Hom Nin recombinant inbred lines. Scienceasia, 2006, 32: 133–142 [24] Miah G, Rafii M Y, Ismail M R, Puteh A B, Rahim H A, Asfaliza R, Latif M A. Blast resistance in rice: a review of conventional breeding to molecular approaches. Mol Biol Rep, 2012, 40: 2369–2388 [25] 李恩宇, 王悦, 陈光辉. 水稻稻瘟病抗性基因的定位及克隆研究进展. 作物研究, 2014, 28(6): 754–760 Li E Y, Wang Y, Chen G H. Advances on the mapping and cloning of blast resistance gene in rice. Crop Res, 2014, 28(6): 754–760 (in Chinese with English abstract) [26] Kobayashi N, Telebanco-Yanoria M J, Tsunematsu H, Kato H, Imbe T, Fukuta Y. Development of new sets of international standard differential varieties for blast resistance in rice (Oryza sativa L.). Jpn Agric Res Q, 2007, 41: 31–37 [27] 何月秋, 唐文华. CO39 近等基因系抗稻瘟病性分析. 作物学报, 2001, 27: 838–841 He Y Q,Tang W H. Identification of CO39 near-isogenicl ines for rice blast resistance. Acta Agron Sin, 2001, 27: 838–841 (in Chinese with English abstract) [28] Chou L S, Lyon E, Wittwer C T. A comparison of high-resolution melting analysis with denaturing high-performance liquid chromatography for mutation scanning: cystic fibrosis transmembrane conductance regulator gene as a model. Am J Clin Pathol, 2005, 124: 330–338 [29] Krypuy M, Newnham G M, Thomas D M, Conron M, Dobrovic A. High resolution melting analysis for the rapid and sensitive detection of mutations in clinical samples: KRAS codon 12 and 13 mutations in non-small cell lung cancer. BMC Cancer, 2006, 6: 295 [30] Do H, Krypuy M, Mitchell P L, Fox S B, Dobrovic A. High resolution melting analysis for rapid and sensitive EGFR and KRAS mutation detection in formalin fixed paraffin embedded biopsies. BMC Cancer, 2008, 8: 142 [31] Li J S, Wang X M, Dong R X, Yang Y, Zhou J, Yu C, Cheng Y, Yan C Q, Chen J P. Evaluation of high-resolution melting for gene mapping in rice. Plant Mol. Biol. Rep, 2011, 29: 979–985 [32] 罗文龙, 郭涛, 周丹华, 陈海英, 王慧, 陈志强, 刘永柱. 利用基于HRM的功能标记分析水稻Wx和fgr的基因型. 湖南农业大学学报, 2013, 39: 597–603 Luo W L, Guo T, Zhou D H, Chen H Y, Wang H, Chen Z Q, Liu Y Z. Analysis of rice genotypes rice Wx and fgr by HRM-based functional marker. J Hunan Agric Univ, 2013, 39: 597–603 (in Chinese with English abstract) [33] Shabanimofrad M, Rafii M Y, Ashkani S, Hanafi M M, Adam N A, Latif M A, Rahim H A, Sahebi M. Analysis of SSR markers linked with brown planthopper resistance genes (Bph) using high-resolution melting (HRM) in rice. Plant Omics, 2015, 8: 212–219

[1] 张钰坤, 陆赢, 崔看, 夏石头, 刘忠松. 芥菜种子颜色调控基因TT8的等位变异及其地理分布分析[J]. 作物学报, 2022, 48(6): 1325-1332.
[2] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[3] 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080.
[4] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[5] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[6] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379.
[7] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[8] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[9] 陈灿, 农保选, 夏秀忠, 张宗琼, 曾宇, 冯锐, 郭辉, 邓国富, 李丹婷, 杨行海. 广西水稻地方品种核心种质稻瘟病抗性位点全基因组关联分析[J]. 作物学报, 2021, 47(6): 1114-1123.
[10] 孙志广, 王宝祥, 周振玲, 方磊, 迟铭, 李景芳, 刘金波, Bello Babatunde Kazeem, 徐大勇. 水稻萌发耐淹性种质资源筛选及QTL定位[J]. 作物学报, 2021, 47(1): 61-70.
[11] 赵孟良,王丽慧,任延靖,孙雪梅,侯志强,杨世鹏,李莉,钟启文. 257份菊芋种质资源表型性状的遗传多样性[J]. 作物学报, 2020, 46(5): 712-724.
[12] 张晓军,肖进,王海燕,乔麟轶,李欣,郭慧娟,常利芳,张树伟,阎晓涛,畅志坚,武宗信. 小偃麦衍生品系的赤霉病抗性评价[J]. 作物学报, 2020, 46(01): 62-73.
[13] 郜欢欢,叶桑,王倩,王刘艳,王瑞莉,陈柳依,唐章林,李加纳,周清元,崔翠. 甘蓝型油菜种子萌发期耐铝毒特性综合评价及其种质筛选[J]. 作物学报, 2019, 45(9): 1416-1430.
[14] 陆海燕,周玲,林峰,王蕊,王凤格,赵涵. 基于高通量测序开发玉米高效KASP分子标记[J]. 作物学报, 2019, 45(6): 872-878.
[15] 崔翠,程闯,赵愉风,郜欢欢,王瑞莉,王刘艳,周清元. 52份豌豆种质萌发期耐铝毒性的综合评价与筛选[J]. 作物学报, 2019, 45(5): 798-805.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!