欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (12): 1733-1745.doi: 10.3724/SP.J.1006.2017.01733

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

利用黄褐棉染色体片段导入系定位产量和纤维品质性状QTL

沈超1,李定国2,聂以春1,林忠旭1,*   

  1. 1 华中农业大学植物科学技术学院作物遗传改良国家重点实验室, 湖北武汉 430070; 2长江大学农学院, 湖北荆州 434025
  • 收稿日期:2017-04-17 修回日期:2017-09-10 出版日期:2017-12-12 网络出版日期:2017-09-28
  • 基金资助:

    本研究由国家转基因生物新品种培育重大专项(2016ZX08009001)资助。

QTL Mapping for Yield and Fiber Quality Traits Using Gossypium mustelinum Chromosome Segment Introgression Lines

SHEN Chao1, LI Ding-Guo2, NIE Yi-Chun1,LIN Zhong-Xu1,*   

  1. 1 National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; 2 College of Agronomy, Yangtze University, Jingzhou 434025, China
  • Received:2017-04-17 Revised:2017-09-10 Published:2017-12-12 Published online:2017-09-28
  • Supported by:

    The study was supported by the National Major Project for Developing New GM Crops (2016ZX08009001).

摘要:

陆地棉的遗传基础狭窄,阻碍了棉花的遗传改良进程。为有效拓宽陆地棉的遗传基础,本试验利用野生种黄褐棉(AD4)为供体亲本,以综合性状优良的B0011品系为受体亲本(国审棉华杂棉H318的亲本之一),构建了含71个株系的导入系BC5S5群体。基于SLAF-seq的基因分型和多年多点田间试验的综合分析表明,该导入系在产量和纤维性状方面具有很大的变异,共检测到48个QTL,其中包含19个产量和29个纤维构成因素相关的QTL。在At亚组检测到9个性状的32个QTL,在Dt亚组为16个。进一步对QTL加性效应方向分析显示,其中有30个QTL的加性效应为正,18个QTL的加性效应为负。本研究结果为利用黄褐棉重要农艺性状有利等位基因改良陆地棉产量和品质奠定了基础。

关键词: 陆地棉, 黄褐棉, 导入系, 产量, 纤维品质, QTL, 加性效应

Abstract:

The genetic basis of upland cotton is narrow, which hinders the progress of genetic improvement of cotton. To effectively broaden the genetic basis of upland cotton, we developed BC5S5 chromosome segment substitution lines (CSSLs) population consisting of 71 CSSLs, which was derived from the Gossypium mustelinum, the wild cotton (AD4) as the donor, and B0011, one parent of national authorized cotton variety Huazamian H318 with good comprehensive characters of upland cotton line (AD1) as the receptor. A comprehensive analysis was conducted via the SLAF-seq genotyping and phenotyping under multiple environments. This population showed a wide range of variation in yield components and fiber quality, and a total of 48 QTLs were detected including 19 for yield components and 29 for fiber quality. Among the QTLs for nine traits, 32 and 16 were on the At and Dt sub-genomes, respectively. Further analyzing revealed that 30 QTLs showed positive additive effects, and 18 QTLs showed negative additive effects. The results of this study lay a foundation for the genetic improvement of upland cotton using the elite alleles of important agronomic traits from G. mustelinum.

Key words: Upland cotton, G. mustelinum, CSILs, Yield, Fiber quality, QTL, Additive Effect

[1]Grover C E, Gallagher J P, Jareczek J J, Page J T, Udall J A, Gore M A, Wendel J F. Re-evaluating the phylogeny of allopolyploid Gossypium L. Mol Phylogenet Evol, 2015, 92: 45–52 [2]Fang D D, Jenkins J N, Deng D D, McCarty J C, Li P, Wu J. Quantitative trait loci analysis of fiber quality traits using a random-mated recombinant inbred population in Upland cotton (Gossypium hirsutum L.). BMC Genomics, 2014, 15: 397 [3]Zhang J F, Wu M, Yu J W, Li X L, Pei W F. Breeding Potential of introgression lines developed from interspecific crossing between upland cotton (Gossypium hirsutum) and Gossypium barbadense: heterosis, combining ability and genetic effects. PLoS One. 2016, 11: e0143646 [4]王云鹏, 王省芬, 李志坤, 杨鑫雷, 张艳, 吴立强, 吴金华, 张桂寅, 马峙英. 陆地棉背景的Pima棉染色体片段置换系创制. 植物遗传资源学报, 2016, 17: 114–119 Wang Y P, Wang X F, Li Z K, Yang X L, Zhang Y, Wu L Q, Wu J H, Zhang G Y, Ma Z Y. Development of pima cotton chromosome segment substitution lines with Gossypium hirsutum background. J Plant Genet Resour, 2016, 17: 114–119 (in Chinese with English abstract) [5]Jiang C X, Wright R J, El-Zik K, Paterson A H. Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc Natl Acad Sci USA, 1998, 95: 4419–4424 [6]Li X, Wang W, Wang Z, Li K, Lim Y P, Piao Z. Construction of chromosome segment substitution lines enables QTL mapping for flowering and morphological traits in Brassica rapa. Front Plant Sci, 2015, 6: 432 [7]Wang P, Zhu Y J, Song X L, Cao Z B, Ding Y Z, Liu B L, Zhu X F, Wang S, Guo W Z, Zhang T Z. Inheritance of long staple fiber quality traits of Gossypium barbadense in G. hirsutum background using CSILs. Theor Appl Genet, 2012, 124: 1415–1428 [8]Yamamoto T, Yonemaru J, Yano M. Towards the understanding of complex traits in rice: substantially orsuperficially? DNA Res, 2009, 16: 141–154 [9]Eshed Y, Zamir D. An introgression line population of lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 1995, 141: 1147–1162 [10]王立秋, 赵永锋, 薛亚东, 张祖新, 郑用琏, 陈景堂. 玉米衔接式片段导入系群体的构建和评价. 作物学报, 2007, 33: 663–668 Wang L Q, Zhao Y F, Xue Y D, Zhang Z X, Zheng Y L, Chen J T. Development and evaluation of two link-up single segment introgression lines (SSILs) in Zea mays. Acta Agron Sin, 2007, 33: 663–668 (in Chinese with English abstract) [11]高晓清, 谢学文, 许美容, 王磊, 石英尧, 高用明, 朱苓华, 周永力, 黎志康. 水稻抗纹枯病导入系的构建及抗病位点的初步定位. 作物学报, 2011, 37: 1559–1568 Gao X Q, Xie X W, Xu M R, Wang L, Shi Y Y, Gao Y M, Zhu L H, Zhou Y L, Li Z K. Development of introgression lines and identification of QTLs for resistance to sheath blight. Acta Agron Sin, 2011, 37: 1559–1568 (in Chinese with English abstract) [12]Bian J M, He H H, Shi H, Zhu G Q, Li C J, Zhu C G, Peng X S, Yu Q Y, Fu J R, He X F, Chen X R, Hu L F, Ou-Yang L J. Quantitative trait loci mapping for flag leaf traits in rice using a chromosome segment substitution line population. Plant Breed, 2014, 133: 203–209 [13]He Q Y, Yang H Y, Xiang S H, Wang W B, Xing G N, Zhao T J, Gai J Y. QTL mapping for the number of branches and pods using wild chromosome segment substitution lines in soybean [Glycine max (L.) Merr.]. Plant Genet Resour, 2014, 12: S172–S177 [14]Korff M V, Wang H, Léon J, Pillen, K. Development of candidate introgression lines using an exotic barley accession (Hordeum vulgare ssp. spontaneum) as donor. Theor Appl Genet, 2004, 109: 1736–1745 [15]Howell P M, Lydiate D J, Marshall D F. Towards developing intervarietal substitution lines in Brassica napus using marker-assisted selection. Genome, 1996, 39: 348–358 [16]Wang P, Ding Y Z, Lu Q X. Development of Gossypium barbadense chromosome segment substitution lines in the genetic standard line TM-1 of Gossypium hirsutum. Sci Bull, 2008, 53: 1512–1517 [17]朱亚娟, 王鹏, 郭旺珍, 张天真. 利用海岛棉染色体片段导入系定位衣分和籽指QTL. 作物学报, 2010, 36: 1318–1323 Zhu Y J, Wang P, Guo W Z, Zhang T Z. Mapping QTLs for lint percentage and seed index using Gossypium barbadense chromosome segment introgression lines. Acta Agron Sin, 2010, 36: 1318–1323 (in Chinese with English abstract) [18]王鹏, 张天真. 利用棉花海陆种间染色体片段导入系剖析光合色素含量的遗传基础. 作物学报, 2012, 38: 947–953 Wang P, Zhang T Z. Genetic dissection of photosynthetic pigment content in cotton interspecific chromosome segment introgression lines. Acta Agron Sin, 2012, 38: 947–953 (in Chinese with English abstract) [19]付央, 苑冬冬, 胡文静, 蔡彩平, 郭旺珍. 陆地棉背景下海岛棉第18染色体片段置换系的培育及相关农艺性状QTL定位. 作物学报, 2013, 39: 21–28 Fu Y, Yuan D D, Hu W J, Cai C P, Guo W Z. Development of Gossypium barbadense chromosome 18 segment substitution lines in the genetic standard line TM-1 of Gossypium hirsutum and mapping of QTLs related to agronomic traits. Acta Agron Sin, 2013, 39: 21–28 (in Chinese with English abstract) [20]黎波涛, 石玉真, 龚举武, 李俊文, 刘爱英, 王涛, 商海红, 巩万奎, 陈婷婷, 葛群, 张金凤, 王永波, 胡玉枢, 袁有禄. 多环境下陆地棉染色体片段代换系及F1皮棉产量与纤维品质的表型分析. 棉花学报, 2016, 28: 75–80 Li B T, Shi Y Z, Gong J W, Li J W, Liu A Y, Wang T, Shang H H, Gong W K, Chen T T, Ge Q, Zhang J F, Wang Y B, Hu Y S, Yuan Y L. Phenotypic analysis of lint yield and fiber quality traits of cotton chromosome segment substitution lines and F1 hybrids in multiple environments. Cotton Sci, 2016, 28: 75–80 (in Chinese with English abstract) [21]Si Z F, Chen H, Zhu X F, Cao Z B, Zhang T Z. Genetic dissection of lint yield and fiber quality traits of G. hirsutum in G. barbadense background. Mol Breed, 2017, 37: 9 [22]肖松华, 刘剑光, 赵君, 吴巧娟, 俞敬忠, 喻德跃. 棉花远缘杂交创制抗黄萎病新种质. 棉花学报, 2015, 27: 524–533 Xiao S H, Liu J G, Zhao J, Wu Q J, Yu J Z, Yu D Y. Creation of a new resistant germplasm to Verticillium wilt by distant hybridization in Upland cotton. Cotton Sci, 2015, 27, 524–533 (in Chinese with English abstract) [23]汪保华, 王为, 庄智敏, 朱新宇. 3个黄褐棉近等基因系的选择及评价. 中国农学通报, 2011, 27: 45–49 Wang B H, Wang W, Zhuang Z M, Zhu X Y. Selection and evaluation of three Gossypium mustelinum near-isogenic lines. Chin Agric Sci Bull, 2011, 27: 45–49 (in Chinese with English abstract) [24]刘宏伟, 李南南, 苗玉焕, 柳仕明, 聂以春, 朱龙付, 张献龙. 利用FBP:iaaM改良华杂棉H318产量与纤维品质研究. 石河子大学学报(自然科学版), 2016, 34: 134–140 Liu H W, Li N N, Miao Y H, Liu S M, Nie Y C, Zhu L F, Zhang X L. Study on yield and fiber quality improvement of “Huazamian H318” with FBP:iaaM. J Shihezi Univ (Nat Sci), 2016, 34: 134–140 (in Chinese with English abstract) [25]Kashif I M. 陆地棉×黄褐棉种间全基因组SSR高密度遗传图谱的构建. 中国农业科学院博士学位论文, 河南安阳, 2014 Kashif I M. Genome-Wide SSR High Density Genetic Map Construction from an Interspecific Cross of G. hirsutum × G. mustelinum. PhD Dissertation of Chinese Academy of Agricultural Sciences, Anyang, China, 2014 (in Chinese with English abstract) [26]Sun X W, Liu D Y, Zhang X F, Li W B, Liu H, Hong W G, Jiang C B, Guan N, Ma, C X, Zeng H P, Xu, C H, Song, J, Huang L, Wang C M, Shi J J, Wang R, Zheng X H, Lu C Y, Wang X W, Zheng H K. SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS One, 2013, 8: e58700 [27]Shen C, Jin X, Zhu D, Lin Z X. Uncovering SNP and Indel variations of tetraploid cottons by SLAF-seq. BMC Genomics, 2017, 18: 247 [28]Wang H T, Huang C, Guo H L, Li X M, Zhao W X, Dai B S, Yan Z H, Lin Z X. QTL mapping for fiber and yield traits in upland cotton under multiple environments. PLoS One, 2015, 10: e0130742 [29]Merk H L,Yarnes S C, Van Deynze A, Tong N K, Menda N, Mueller L A, Mutschler M A, Loewen S A, Myers J R, Francis D M. Trait diversity and potential for selection indices based on variation among regionally adapted processing tomato germplasm. J Amer Soc Hort Sci, 2012, 137: 427–437 [30]Wang B H, Liu L M, Zhang D, Zhuang Z M, Guo H, Qiao X, Wei L J, Rong J K, May O L, Paterson A H, Chee P W. A genetic map between Gossypium hirsutum and the Brazilian Endemic G. mustelinum and its application to QTL mapping. G3: Genes Genom Genet, 2016, 6: 1673–1685 [31]Zhang T Z, Hu Y, Jiang W K, Fang L, Guan X Y, Chen J D, Zhang J B, Saski C A, Scheffler B E, Stelly D M, Hulse-Kemp A M, Wan Q, Liu B L, Liu C X, Wang S, Pan M Q, Wang Y K, Wang D W, Ye W X, Chang L J, Zhang W P, Song Q X, Kirkbride R C, Chen X Y, Dennis E, Llewellyn D J, Peterson D G, Thaxton P, Jones D C, Wang Q, Xu X Y, Zhang H, Wu H T, Zhou L, Mei G F, Chen S Q, Tian Y, Xiang D, Li X H, Ding J, Zuo Q Y, Tao L N, Liu Y C, Li J, Lin Y Y, Hui Y, Cao Z S, Cai C P, Zhu X F, Jiang Z, Zhou B L, Guo W Z, Li R Q, Chen Z J. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol, 2015, 33: 531–537 [32]Wang J K, Wan X Y, Crossa J, Crouch J, Weng J F, Zhai H Q, Wan J M. QTL mapping of grain length in rice (Oryza sativa L.) using chromosome segment substitution lines. Genet Res, 2006, 88: 93–104 [33]Wang J K, Wan X Y, Li H H, Pfeiffer W H, Crouch J, Wan J M. Application of identified QTL-marker associations in rice quality improvement through a design-breeding approach. Theor Appl Genet, 2007, 115: 87–100 [34]McCouch S R, Cho Y G, Yano P E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newslett, 1997, 14: 11–13 [35]Wang S, Chen J D, Zhang W P, Hu Y, Chang L J, Fang L, Wang Q, Lv F, Wu H T, Si Z F, Chen S Q, Cai C P, Zhu X F, Zhou B L, Guo W Z, Zhang T Z. Sequence-based ultra-dense genetic and physical maps reveal structural variations of allopolyploid cotton genomes. Genome Biol, 2015, 16: 108 [36]王鹏. 陆地棉TM-1背景的海岛棉染色体片段导入系的培育鉴定和纤维强度QTL精细定位. 南京农业大学博士学位论文, 江苏南京, 2009 Wang P. Development and Evaluation of G. barbadense Chromosome Segment Substitution Lines Cotton in Genetic Standard Line, TM-1 of G. hirsutum and Fine Mapping QTL for Fiber. PhD Dissertation of Nanjing Agricultural University, Nanjing, China, 2009 (in Chinese with English abstract) [37]Rong J K, Feltus, F A, Waghmare V N, Pierce G J, Chee P W, Draye X, Saranga Y, Wright R J, Wilkins T A, May O L, Smith C W, Gannaway J R, Wendel J F, Paterson A H. Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development. Genetics, 2007, 176: 2577–2588 [38]Paterson A H, Saranga Y, Menz M, Jiang C X, Wright R J. QTL analysis of genotype × environment interaction affecting cotton fiber quality. Theor Appl Genet, 2003, 6: 384–396 [39]Zhang S W, Feng L C, Xing L T, Yang B, Gao X, Zhu X F, Zhang T Z, Zhou B L. New QTLs for lint percentage and boll weight mined in introgression lines from two feral landraces into Gossypium hirsutum acc TM-1. Plant Breed, 2016, 135: 90–101 [40]Cao Z B, Zhu X F, Chen H, Zhang T Z. Fine mapping of clustered quantitative trait loci for fiber quality on chromosome 7 using a Gossypium barbadense introgressed line. Mol Breed, 2015, 35: 1–13

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[3] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[4] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[8] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[9] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[10] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[11] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[12] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!