欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (02): 159-168.doi: 10.3724/SP.J.1006.2018.00159

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

利用SSR和SNP标记分析鲁麦14对青农2号的遗传贡献

李玉刚1,**, 任民2,**, 孙绿1,3, 王圣健1, 韩梅1,3, 李振清1, 翟晓灵1, 代小雁4, 侯元江4,*(), 盖红梅1,*()   

  1. 1青岛市农业科学研究院, 山东青岛, 266100
    2中国农业科学院烟草研究所 / 烟草遗传改良与生物技术重点开放实验室, 山东青岛 266101
    3青岛农业大学 / 山东省旱作农业技术重点实验室, 山东青岛 266109
    4山东省青丰种子有限公司, 山东青岛 266700
  • 收稿日期:2017-04-10 接受日期:2017-11-21 出版日期:2018-02-12 网络出版日期:2017-12-12
  • 通讯作者: 李玉刚,任民,侯元江,盖红梅
  • 作者简介:liyg1967@163.com; ** 同等贡献(Contributed equally to this work)
  • 基金资助:
    本研究由国家重点研发计划项目(2016YFD0100300), 国家自然科学基金项目(31301320), 山东省农业良种工程项目(2016LZ01-01)和青岛市现代农业产业技术体系小麦产业创新推广团队资助

Genetic Contribution of Lumai 14 to Qingnong 2 Revealed by SSR and SNP Markers

Yu-Gang LI1,**, Min REN2,**, Lv SUN1,3, Sheng-Jian WANG1, Mei HAN1,3, Zhen-Qing LI1, Xiao-Ling ZHAI1, Xiao-Yan DAI4, Yuan-Jiang HOU4,*(), Hong-Mei GE1,*()   

  1. 1 Qingdao Academy of Agricultural Sciences, Qingdao 266100, Shandong, China
    2 Key Laboratory of Tobacco Genetic Improvement and Biotechnology, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, Shandong, China
    3 College of Agronomy and Plant Protection, Qingdao Agricultural University / Shandong Provincial Key Laboratory of Dryland Farming Techniques, Qingdao 266109, Shandong, China
    4 Shandong Qingfeng Seed Company limited, Qingdao 266700, Shandong, China
  • Received:2017-04-10 Accepted:2017-11-21 Published:2018-02-12 Published online:2017-12-12
  • Contact: Yu-Gang LI,Min REN,Yuan-Jiang HOU,Hong-Mei GE
  • Supported by:
    This study was supported by the National Key Research and Development Program of China (2016YFD0100300), the National Natural Science Foundation of China (31301320), the Breeding Improvement Project of Shandong Province (2014LZ01-01), and the Wheat Industry Innovative Team of Qingdao Agriculture Research System.

摘要:

鲁麦14既是大面积推广品种, 又是育种骨干亲本, 衍生了40多个品种, 其中青农2号(鲁麦14/烟农15//矮秆麦)是近年审定的小麦品种。本研究利用350个SSR标记和小麦90k芯片检测的26 026个SNP标记, 解析了鲁麦14对青农2号的遗传贡献。鲁麦14和烟农15分别含有1/4和1/2蚰包麦血统, 基因组分子标记分析结果显示, 这两个品种有55.42%的SSR位点一致, 而SNP位点一致性高达71.53%。选择亲本间差异位点, 分析鲁麦14和烟农15对青农2号的遗传贡献, 结果表明鲁麦14对青农2号的贡献大于烟农15, 青农2号与亲本鲁麦14、烟农15分子标记的一致性, SSR标记分别为54.11%和36.30%, SNP标记分别为72.55%和26.98%。依据高通量SNP标记结果, 从染色体水平看, 烟农15贡献率超过50%的染色体有2B、3B和6A; 而鲁麦14在除此之外的18条染色体的遗传贡献率大于50%。青农2号遗传组成图谱揭示了遗传物质多以较大染色体片段形式从亲本传递至子代。对亲本和子代进行多年多点的农艺性状调查, 发现青农2号的旗叶长、旗叶宽、穗下节间长、穗叶距、抽穗度等株型相关性状及千粒重、粒长等产量相关性状与鲁麦14相近, 株高、生育期等性状与烟农15相近。本文从分子层面解析育种亲本对子代的遗传贡献, 为分子标记辅助育种提供了依据和理论基础。

关键词: 骨干亲本, 遗传贡献, 遗传组成, SSR, 90k芯片

Abstract:

Lumai 14, a widely planted wheat variety, is the parents of more than 40 bread wheat varieties, among which Qingnong 2 (Lumai 14/Yannong 15//Aiganmai) has been released in recent years. In this study, the inheritance from Lumai 14 to Qingnong 2 was evaluated using 350 SSR markers and 26 026 SNPs detected by iSelect 90k SNP array. Pedigrees show that Lumai 14 and Yannong 15 contain 1/4 and 1/2 blood of Youbaomai, respectively. Genomic marker screening confirmed that Lumai 14 and Yannong 15 shared 55.42% common SSR loci and 71.53% common SNP loci. Polymorphic markers between them were used to disclose that Qingnong 2 inherited more SSR and SNP loci from Lumai 14 (54.11% and 72.55%, respectively) than from Yannong 15 (36.30% and 26.98%, respectively). In Qingnong 2, chromosomes 2B, 3B, and 6A harbored more than 50% SNPs from Yannong 15, whereas, the remaining 18 chromosomes carried more than 50% SNPs from Lumai 14. The parental genetic compositions were present mainly in large chromosomal segments in Qingnong 2. Phenotyping investigation in multi-locations across years indicated that Qingnong 2 was similar to Lumai 14 in length and width of flag leaf, length of first internode, length from flag leaf pulvinus to spike base, earing degree, thousand-grain weight, and grain length, and similar to Yanong 15 in plant height and growth duration. This results provide valuable information for molecular marker-assisted selection in wheat breeding.

Key words: founder parents, genetic contribution, genetic composition, SSR, 90k array

表1

性状调查的年份和地点"

年份
Year
地点
Location
环境数
Number of environments
2013-2014 山东青岛城阳, 山东泰安肥城, 河南新乡 3
2014-2015 山东青岛城阳1), 山东青岛平度, 山东泰安肥城, 河南新乡 4
2015-2016 山东青岛城阳1), 山东青岛平度, 山东泰安肥城 3

图1

青农2号亲本鲁麦14(A)和烟农15(B)的系谱该系谱根据方正等[33]报道整理。"

图2

鲁麦14和烟农15 SSR (a)和SNP位点(b)的异同比例和染色体组分布"

图3

用SSR和SNP标记分析鲁麦14和烟农15对青农2号的贡献(a) 全基因组水平; (b) SSR标记在不同染色体的分布; (c) SNP标记在不同染色体的分布。"

表2

鲁麦14和烟农15在21条染色体对青农2号的遗传贡献"

染色体
Chr.
SSR SNP
差异位点 Differential loci 鲁麦14
Lumai 14
贡献率 Contribution (%) 烟农15
Yannong 15
贡献率 Contribution (%) 差异位点 Differential loci 鲁麦14
Lumai 14
贡献率 Contribution (%) 烟农15
Yannong 15
贡献率 Contribution (%)
1A 11 5 45.45 4 36.36 660 433 65.61 227 34.39
1B 10 6 60.00 3 30.00 685 620 90.51 65 9.49
1D 10 8 80.00 1 10.00 145 140 96.55 5 3.45
2A 9 4 44.44 3 33.33 270 238 88.15 32 11.85
2B 6 3 50.00 3 50.00 302 80 26.49 220 72.85
2D 8 3 37.50 4 50.00 325 321 98.77 3 0.92
染色体
Chr.
SSR SNP
差异位点 Differential loci 鲁麦14
Lumai 14
贡献率 Contribution (%) 烟农15
Yannong 15
贡献率 Contribution (%) 差异位点 Differential loci 鲁麦14
Lumai 14
贡献率 Contribution (%) 烟农15
Yannong 15
贡献率 Contribution (%)
3A 7 5 71.43 1 14.29 362 318 87.85 43 11.88
3B 4 1 25.00 3 75.00 202 51 25.25 150 74.26
3D 3 1 33.33 2 66.67 66 65 98.48 1 1.52
4A 3 2 66.67 1 33.33 173 155 89.60 18 10.40
4B 7 1 14.29 5 71.43 134 73 54.48 58 43.28
4D 3 2 66.67 1 33.33 15 14 93.33 1 6.67
5A 5 3 60.00 2 40.00 319 277 86.83 42 13.17
5B 5 2 40.00 3 60.00 233 151 64.81 81 34.76
5D 18 10 55.56 7 38.89 44 33 75.00 10 22.73
6A 9 4 44.44 5 55.56 390 121 31.03 263 67.44
6B 6 4 66.67 2 33.33 511 393 76.91 117 22.90
6D 3 2 66.67 1 33.33 77 68 88.31 6 7.79
7A 4 3 75.00 0 0.00 369 286 77.51 83 22.49
7B 6 5 83.33 0 0.00 607 433 71.33 166 27.35
7D 9 5 55.56 2 22.22 35 28 80.00 7 20.00
Total 146 79 54.11 53 36.30 5924 4298 72.55 1598 26.98

图4

青农2号的遗传组成图谱每组图谱前3根表示染色体, 自左向右依次代表鲁麦14、烟农15和青农2号, 第4根表示SNP在整合遗传图中的染色体定位。红色、蓝色、浅黄色、灰色分别表示鲁麦14特有、烟农15特有、共有、非亲本等位变异。"

表3

青农2号及其亲本鲁麦12、烟农15在多环境下农艺性的无偏估计(BLUP)值"

[1] 庄巧生. 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003
Zhuang Q S.Chinese Wheat Improvement and Pedigree Analysis. Beijing: China Agricultural Press, 2003 (in Chinese)
[2] 盖红梅, 王兰芬, 游光霞, 郝晨阳, 董玉琛, 张学勇. 基于SSR标记的小麦骨干亲本育种重要性研究. 中国农业科学, 2009, 42: 1503-1511
Ge H M, Wang L F, You G X, Hao C Y, Dong Y C, Zhang X Y.Fundamental roles of cornerstone breeding lines in wheat reflected by SSR random scanning.Sci Agric Sin, 2009, 42: 1503-1511 (in Chinese with English abstract)
[3] 亓佳佳, 韩芳, 马守才, 张莉莉, 余欣欣, 陈蕴文, 毕晓静, 史秀秀, 牛娜. 小麦骨干亲本小偃6号及其衍生品种(系)的遗传解析. 西北农林科技大学学报(自然科学版), 2015, 43: 45-53
Qi J J, Han F, Ma S C, Zhang L L, Yu X X, Chen Y W, Bi X J, Shi X X, Niu N.Genetic dissection of wheat milestone parent Xiaoyan 6 and its derivatives.J Northwest A&F Univ(Nat Sci Edn), 2015, 43: 45-53 (in Chinese with English abstract)
[4] 于海霞, 肖静, 田纪春. 小麦骨干亲本矮孟牛及其衍生后代遗传解析. 中国农业科学, 2012, 45: 199-207
Yu H X, Xiao J, Tian J C.Genetic dissection of milestone parent aimengniu and its derivatives.Sci Agric Sin, 2012, 45: 199-207 (in Chinese with English abstract)
[5] 肖永贵, 殷贵鸿, 李慧慧, 夏先春, 阎俊, 郑天存, 吉万全, 何中虎. 小麦骨干亲本“周8425B”及其衍生品种的遗传解析和抗条锈病基因定位. 中国农业科学, 2011, 44: 3919-3929
Xiao Y G, Yin G H, Li H H, Xia X C, Yan J, Zheng T C, Ji W Q, He Z H.Genetic diversity and genome-wide asociation analysis of stripe rust resistance among the core wheat parent Zhou 8425B and its derivatives. Sci Agric Sin, 2011, 44: 3919-3929 (in Chinese with English abstract)
[6] Ge H M, You G X, Wang L F, Hao C Y, Dong Y C, Li Z S, Zhang X Y.Genome selection sweep and association analysis shed light on future breeding by design in wheat.Crop Sci, 2012, 52: 1218-1228
[7] 韩俊, 张连松, 李静婷, 石丽娟, 解超杰, 尤明山, 杨作民, 刘广田, 孙其信, 刘志勇. 小麦骨干亲本“胜利麦/燕大1817”杂交组合后代衍生品种遗传构成解析. 作物学报, 2009, 35: 1395-1404
Han J, Zhang L S, Li J T, Shi L J, Xie C J, You M S, Yang Z M, Liu G T, Sun Q X, Liu Z Y.Molecular dissection of core parental cross “Triumph/Yanda 1817” and its derivatives in wheat breeding program.Acta Agron Sin, 2009, 35: 1395-1404 (in Chinese with English abstract)
[8] 方正, 翟冬峰, 刘维正. 试论种质资源创新是小麦育种的前期工程. 小麦研究, 2016, 37(02): 1-6
Fang Z, Zhai D F, Liu W Z.Discussion on the germplasm innovation as the per-breeding program in wheat breeding.J Wheat Res, 2016, 37(02): 1-6 (in Chinese with English abstract)
[9] 盖红梅, 李玉刚, 王瑞英, 李振清, 王圣健, 高峻岭, 张学勇. 鲁麦14对山东新选育小麦品种的遗传贡献. 作物学报, 2012, 38: 954-961
Ge H M, Li Y G, Wang R Y, Li Z Q, Gao J L, Zhang X Y.Genetic contribution of Lumai 14 to novel wheat varieties developed in Shandong province.Acta Agron Sin, 2012, 38: 954-961 (in Chinese with English abstract)
[10] 方正, 翟冬峰. 冬小麦杂交育种实践60年回顾. 山东农业科学, 2013, 45: 114-118
Fang Z, Zhai D F.A review of winter wheat hybrid breeding in the past sixty years.Shandong Agric Sci, 2013, 45: 114-118 (in Chinese with English abstract)
[11] 刘兆晔, 于经川, 孙妮娜, 李林志. 骨干亲本鲁麦13、鲁麦14在山东小麦育种中的应用. 农业科技通讯, 2015, (1): 87-90
Liu Z Y, Yu J C, Sun N N, Li L Z.The application of founder parents Lumai 13 and Lumai 14 in wheat breeding of Shandong province. Bull Agric Sci Tech, 2015, (1): 87-90 (in Chinese)
[12] Doebley J F, Gaut B S, Smith B D.The molecular genetics of crop domestication.Cell, 2006, 127: 1309-1321
[13] 张学勇, 马琳, 郑军. 作物驯化和品种改良所选择的关键基因及其特点. 作物学报, 2017, 43: 157-170
Zhang X Y, Ma L, Zheng J.Characteristics of genes selected by domestication and intensive breeding in crop plants.Acta Agron Sin, 2017, 43: 157-170 (in Chinese with English abstract)
[14] Lai J S, Li R Q, Xun X, Jin W W, Xu M L, Zhao H N, Xiang Z K, Song W B, Ying K, Zheng M, Jiao Y P, Ni P X, Zhang J G, Li D, Guo X S, Ye K X, Jian M, Wang B, Zheng H S, Liang H Q, Zhang X Q, Wang S C, Chen S J, Li J S, Fu Y, Springer N M, Yang H M, Wang J, Dai J R, Schnable P S, Wang J.Genome-wide patterns of genetic variation among elite maize inbred lines.Nat Genet, 2010, 42: 1027
[15] Zhou D, Chen W, Lin Z, Chen H D, Wang C R, Li H, Yu R B, Zhang F Y, Zhen G, Yi J L, Li K G, Liu Y G, Terzaghi W, Tang X Y, He H, Zhou S C, Deng X W.Pedigree-based analysis of derivation of genome segments of an elite rice reveals key regions during its breeding.Plant Biotechnol J, 2016, 14: 638-648
[16] 张学勇, 童依平, 游光霞, 郝晨阳, 盖红梅, 王兰芬, 李滨, 董玉琛, 李振声. 选择牵连效应分析: 发掘重要基因的新思路. 中国农业科学, 2006, 39: 1526-1535
Zhang X Y, Tong Y P, You G X, Hao C Y, Ge H M, Wang L F, Li B, Dong Y C, Li Z S.Hitchhiking effect mapping: a new approach for discovering agronomic important genes.Sci Agric Sin, 2006, 39: 1526-1535 (in Chinese with English abstract)
[17] 李小军, 胡铁柱, 李淦, 姜小苓, 冯素伟, 董娜, 张自阳, 茹振钢, 黄勇. 小麦品种百农AK58及其姊妹系的遗传构成分析. 作物学报, 2012, 38: 436-446
Li X J, Hu T Z, Li J, Jiang X L, Feng S W, Dong N, Zhang Z Y, Ru Z G, Huang Y.Genetic analysis of broad-grown wheat cultivar Bainong AK58 and its sib lines.Acta Agron Sin, 2012, 38: 436-446 (in Chinese with English abstract)
[18] 邹少奎, 殷贵鸿, 唐建卫, 韩玉林, 李楠楠, 李顺成, 黄峰, 王丽娜, 张倩, 高艳. 小麦新品种周麦23号的遗传构成分析及其特异引物筛选. 中国农业科学, 2015, 48: 3941-3951
Zou S K, Yin G H, Tang W J, Han Y L, Li N N, Li S C, Huang F, Wang L N, Zhang Q, Gao Y.Genetic analysis of new wheat variety Zhoumai 23 and screening of specific primers. Sci Agric Sin, 2015, 48: 3941-3951 (in Chinese with English abstract)
[19] Sukumaran S, Dreisigacker S, Lopes M, Chavez P, Reynolds M P.Genome-wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments.Theor Appl Genet, 2014, 128: 353-363
[20] Jia J Z, Zhao S C, Kong X Y, Li Y R, Zhao G Y, He W M, Appels R, Pfeifer M, Tao Y, Zhang X Y, Jing R L, Zhang C, Ma Y Z, Gao L F, Gao C, Spannagl M, Mayer K F, Li D, Pan S K, Zheng F Y, Hu Q, Xia X C, Li J W, Liang Q S, Chen J, Wicker T, Gou C Y, Kuang H H, He G Y, Luo Y D, Keller B, Xia Q J, Lu P, Wang J Y, Zou H F, Zhang R Z, Xu J Y, Gao J L, Middleton C, Quan Z W, Liu G M, Wang J, International Wheat Genome Sequencing Consortium, Yang H M, Liu X, He Z H, Mao L, Wang [J].Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature, 2013, 496: 91-95
[21] Ling H Q, Zhao S C, Liu D C, Wang J Y, Sun H, Zhang C, Fan H J, Li D, Dong L L, Tao Y, Gao C, Wu H L, Li Y W, Cui Y, Guo X S, Zheng S S, Wang B, Yu K, Liang Q S, Yang W L, Lou X Y, Chen J, Feng M J, Jian J B, Zhang X F, Luo G B, Jiang Y, Liu J J, Wang Z B, Shan Y H, Zhang B R, Wu H J, Tang D Z, Shen Q H, Xue P Y, Zou S H, Wang X J, Liu X, Wang F M, Yang Y P, An X L, Dong Z Y, Zhang K P, Zhang X Q, Luo M C, Dvorak J, Tong Y P, Wang J, Yang H M, Li Z S, Wang D W, Zhang A M, Wang J.Draft genome of the wheat A-genome progenitor Triticum urartu. Nature, 2013, 496: 87-90
[22] Luo M C, Yong Q G, Frank M Y.A 4-gigabase physical map unlocks the structure and evolution of the complex genome ofAegilops tauschii, the wheat D-genome progenitor. Proc Natl Acad Sci USA, 2013, 110: 7940-7945
[23] Cavanagh C R, Chao S, Wang S C Huang B E, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira G L, Akhunova A, See D, Bai G H, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, Silva S L D, Bockelman H, Talbert L, Anderson J A, Dreisigacker S, Baenziger S, Carter A, Korzun V, Morrell P L, Dubcovsky J, Morell M K, Sorrells M E, Hayden M J, Akhunov E. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars.Proc Natl Acad Sci USA, 2013, 110: 8057-8062
[24] Wang S, Wong D, Forrest K, Allen A, Chao S, Huang B E, Maccaferri M, Salvi S, Milner S G, Cattivelli L, Mastrangelo A M, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, International Wheat Genome Sequencing Consortium, Morten Lillemo, Mather D, Appels R, Dolferus R, Brown-Guedira G, Koral A, Akhunova A R, Feuillet C, Salse J, Morgante M, Pozniak C, Luo M C, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch L, Cavanagh C, Edwards K J, Hayden M, Akhunov E. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array.Plant Biotechnol J, 2014, 12: 787
[25] Chao S, Zhang W, Akhunov E, Sherman J, Ma Y, Luo M C, Dubcovsky J.Analysis of gene-derived SNP marker polymorphism in US wheat (Triticum aestivum L.) cultivars. Mol Breed 2009, 23: 23-33
[26] Chao S J, Dubcovsky J, Dvorak, Luo M C, Baenziger S P, Matnyazov R, Clark D R, Talbert L E, Anderson J A, Dreisigacker S, Glover K, Chen J L, Campbell K, Bruckner P L, Rudd J C, Haley S, Carver B F, Perry S, Sorrells M E, Akhunov E D. Population-and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genomics, 2010, 11: 727
[27] 陈建省, 陈广凤, 李青芳, 张晗, 师翠兰, 孙彩铃, 邓志英, 刘凯, 谷植群, 田纪春. 利用基因芯片技术进行小麦遗传图谱构建及粒重QTL分析. 中国农业科学, 2014, 47: 4769-4779
Chen J S, Chen G F, Li Q F, Zhang H, Shi C L, Sun C L, Deng Z Y, Liu K, Gu Z Q, Tian J C.Construction of genetic map using genotyping chips and QTL analysis of grain weight. Sci Agric Sin, 2014, 47: 4769-4779 (in Chinese with English abstract)
[28] Gao F M, Liu J D, Yang L, Wu X X, Xiao Y G, Xia X C, He Z H.Genome-wide linkage mapping of QTL for physiological traits in a Chinese wheat population using the 90K SNP array.Euphytica, 2016, 209: 789-804
[29] 高尚, 莫洪君, 石浩然, 王智强, 林宇, 武方琨, 邓梅, 刘亚西, 魏育明, 郑有良. 利用SNP基因芯片技术进行小麦遗传图谱构建及重要农艺性状QTL分析. 应用与环境生物学报, 2016, 22: 85-94
Gao S, Mo H J, Shi H R, Wang Z Q, Lin Y, Wu F K, Deng M, Liu Y X, Wei Y M, Zheng Y L.Construction of wheat genetic map and QTL analysis of main agronomic traits using SNP genotyping chips technology.Chin J Appl Environ Biol, 2016, 22: 85-94 (in Chinese with English abstract)
[30] 刘凯, 邓志英, 李青芳, 张莹, 孙彩铃, 田纪春, 陈建省. 利用高密度SNP遗传图谱定位小麦穗部性状基因. 作物学报, 2016, 42: 820-831
Liu K, Deng Z Y, Li Q F, Zhang Y, Sun C L, Tian J C, Chen J S.Mapping QTLs for wheat panicle traits with high density SNP genetic map.Acta Agron Sin, 2016, 42: 820-831 (in Chinese with English abstract)
[31] Ain Q U, Rasheed A, Anwar A, Mahmood T, Imtiaz M, Mahmood T, Xia X C, He Z H, Quraishi U M.Genome-wide association for grain yield under rainfed conditions in historical wheat cultivars from Pakistan.Frontiers in Plant Sci, 2015, 31: 743
[32] Hao C, Wang Y, Chao S, Li T, Liu H X, Wang L F, Zhang X Y.The iSelect 90K SNP analysis revealed polyploidization induced revolutionary changes and intense human selection causing strong haplotype blocks in wheat.Sci Rep, 2017, 7: 41247
[33] 方正, 刘维正, 杨今胜, 翟冬峰, 刘为更. 从鲁麦14号的育成论小麦种质资源改良策略. 麦类作物学报, 2005, 25: 121-124
Fang Z, Liu W Z, Yang J S, Zhai D F, Liu W G.Strategy to improve wheat germplasm resource in view of the breeding of Lumai 14.J Triticeae Crops, 2005, 25: 121-124 (in Chinese with English abstract)
[34] Van Inghelandt D, Melchinger A E, Lebreton C, Stich B.Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers.Theor Appl Genet, 2010, 120: 1289-1299
[35] Emanuelli F, Lorenzi S, Grzeskowiak L, Catalano V, Stefanini M, Troggio M, Myles S, Martinez-Zapater J M, Zyprian E, Moreira F M, Grando M S. Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape.BMC Plant Biol, 2013, 13: 39
[36] Fischer M C, Rellstab C, Leuzinger M, Roumet M, Gugerli F, Shimizu K K, Holderegger R, Widmer A.Estimating genomic diversity and population differentiation: an empirical comparison of microsatellite and SNP variation inArabidopsis halleri. BMC Genomics, 2017, 18: 69
[37] 张利莎, 董国清, 扎桑, 卓嘎, 王德良, 谷方红, 袁兴淼, 张京, 郭刚刚. 基于EST-SSR和SNP标记的大麦麦芽纯度检测. 作物学报, 2015, 41: 1147-1154
Zhang L S, Dong G Q, Zha S, Zhuo G, Wang D L, Gu F H, Yuan X M, Zhang J, Guo G G.EST-SSR and SNP markers based barley malt purity detection. Acta Agron Sin, 2015, 41: 1147-1154 (in Chinese with English abstract)
[38] Würschum T, Langer S M, Longin C F H, Korzun V, Akhunov E, Ebmeyer E, Schachschneider R, Schacht J, Kazman E, Reif J C. Population structure, genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers.Theor Appl Genet, 2013, 126: 1477-1486
[1] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[2] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[3] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[4] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[5] 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370.
[6] 郭艳春, 张力岚, 陈思远, 祁建民, 方平平, 陶爱芬, 张列梅, 张立武. 黄麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2021, 47(1): 80-93.
[7] 王恒波,祁舒婷,陈姝琦,郭晋隆,阙友雄. 甘蔗栽培种单倍体基因组SSR位点的发掘与应用[J]. 作物学报, 2020, 46(4): 631-642.
[8] 张红岩,杨涛,刘荣,晋芳,张力科,于海天,胡锦国,杨峰,王栋,何玉华,宗绪晓. 利用EST-SSR标记评价羽扇豆属(Lupinus L.)遗传多样性[J]. 作物学报, 2020, 46(3): 330-340.
[9] 张力岚, 张列梅, 牛焕颖, 徐益, 李玉, 祁建民, 陶爱芬, 方平平, 张立武. 黄麻SSR标记与纤维产量性状的相关性[J]. 作物学报, 2020, 46(12): 1905-1913.
[10] 刘荣, 王芳, 方俐, 杨涛, 张红岩, 黄宇宁, 王栋, 季一山, 徐东旭, 李冠, 郭瑞军, 宗绪晓. 利用2个F2群体整合中国豌豆高密度SSR遗传连锁图谱[J]. 作物学报, 2020, 46(10): 1496-1506.
[11] 叶卫军,陈圣男,杨勇,张丽亚,田东丰,张磊,周斌. 绿豆SSR标记的开发及遗传多样性分析[J]. 作物学报, 2019, 45(8): 1176-1188.
[12] 白彦明,李龙,王绘艳,柳玉平,王景一,毛新国,昌小平,孙黛珍,景蕊莲. 蚂蚱麦和小白麦衍生系的遗传多样性分析[J]. 作物学报, 2019, 45(10): 1468-1477.
[13] 陈芳,乔麟轶,李锐,刘成,李欣,郭慧娟,张树伟,常利芳,李东方,阎晓涛,任永康,张晓军,畅志坚. 小麦新种质CH1357抗白粉病遗传分析及染色体定位[J]. 作物学报, 2019, 45(10): 1503-1510.
[14] 薛延桃,陆平,史梦莎,孙昊月,刘敏轩,王瑞云. 新疆、甘肃黍稷资源的遗传多样性与群体遗传结构研究[J]. 作物学报, 2019, 45(10): 1511-1521.
[15] 姚嘉瑜,张立武,赵捷,徐益,祁建民,张列梅. 黄麻全基因组SSR鉴定与特征分析[J]. 作物学报, 2019, 45(1): 10-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!