欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (6): 814-823.doi: 10.3724/SP.J.1006.2018.00814

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦近缘属植物1-FFT基因的克隆及功能分析

王建伟1,贺晓岚1,*(),李文旭3,陈新宏2   

  1. 1 凯里学院大健康学院, 贵州凯里 556011
    2 西北农林科技大学农学院 / 陕西省植物遗传工程育种重点实验室, 陕西杨凌 712100
    3 河南省农业科学院小麦研究所, 河南郑州 450002
  • 收稿日期:2017-08-26 接受日期:2018-03-26 出版日期:2018-06-12 网络出版日期:2018-04-08
  • 通讯作者: 贺晓岚
  • 基金资助:
    本研究由凯里学院博士专项基金(BS201606);贵州省教育厅科技拔尖人才支持计划项目资助(黔教合KY字[2017]094)

Molecular Cloning and Functional Analysis of 1-FFT in Wheat Relatives

Jian-Wei WANG1,Xiao-Lan HE1,*(),Wen-Xu LI3,Xin-Hong CHEN2   

  1. 1 School of Life and Health Science, Kaili University, Kaili 556011, Guizhou, China
    2 Shaanxi Provincial Key Laboratory of Plant Genetic Engineering Breeding / College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China;
    3 Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
  • Received:2017-08-26 Accepted:2018-03-26 Published:2018-06-12 Published online:2018-04-08
  • Contact: Xiao-Lan HE
  • Supported by:
    This study was supported by the Special Fund for the Doctoral Program of Kaili University(BS201606);the Science and Technology Top Talents Support Program of Guizhou Provincial Education Department(黔教合KY字[2017]094)

摘要:

果聚糖与植物碳素分配和抗逆性有关, 在逆境胁迫中具有保护植物细胞免受伤害的作用。为明确不同来源的果聚糖1-果糖基转移酶基因在植物抗逆中的作用, 本研究分别以小麦近缘属植物华山新麦草(Psathyrostachys huashanica, 2n = 2x = 14, NsNs)、簇毛麦(Dasypyrum villosum, 2n = 2x = 14, VV)、大赖草(Leymus racemosus, 2n = 4x = 28, NsNsXmXm)为材料, 利用RACE技术克隆获得3个果聚糖1-果糖基转移酶1-FFT基因, 分别命名为Ph-1-FFTDv-1-FFTLr-1-FFT。3个基因的完整开放阅读框长度分别为1989、1950和1989 bp, 编码662、649和662个氨基酸, 其编码氨基酸序列均含有果糖基转移酶保守结构域。氨基酸序列比对及进化树分析表明, Ph-1-FFT和Lr-1-FFT高度同源, 与Dv-1-FFT位于不同的分支, 而Dv-1-FFT与普通小麦、圆锥小麦、西尔斯山羊草和乌拉尔图小麦1-FFT具有高度同源性。采用基因重组技术构建p1300-35SN-Ph-1-FFT/Dv-1-FFT/Lr-1-FFT表达载体, 利用农杆菌介导法将3个载体分别转入烟草品种W38中。对经过抗性筛选、PCR和RT-PCR验证的转基因植株鉴定发现, 其抗旱和抗寒性明显高于对照, 不同来源的1-FFT转基因植株的抗逆性差异不明显; 在逆境胁迫条件下, 转基因株系的果聚糖、可溶性糖、脯氨酸含量都显著高于对照, 而丙二醛的含量显著低于对照, 不同来源的1-FFT转基因植株的果聚糖、可溶性糖、脯氨酸和丙二醛含量差异不显著。本研究表明, Ph-1-FFTDv-1-FFTLr-1-FFT基因均是典型的GH32基因家族成员, 其表达可能对提高烟草抗旱和抗寒性起作用。

关键词: 1-FFT基因, 抗旱性, 抗寒性, 小麦近缘属植物, 转基因烟草

Abstract:

Fructan is closely related to carbon distribution and the response to adverse stresses in plant, protecting plant cell membrane stabilization in stress conditions. To determine the effects of fructan:fructan-1-fructosyltransferase genes from different species, we cloned three genes of full-length cDNA from Psathyrostachys huashanica (2n = 2x = 14, NsNs), Dasypyrum villosum (2n = 2x = 14, VV) and Leymus racemosus (2n = 4x = 28, NsNsXmXm), designated Ph-1-FFT, Dv-1-FFT, and Lr-1-FFT, respectively, using reverse transcriptase PCR (RT-PCR) and rapid-amplification of cDNA ends (RACE) techniques. The full-length open reading frames (ORF) are 1989, 1950, and 1989 bp in length, encoding 662, 649, and 662 amino acids, respectively. The predicted protein contains a conserved fructosyltransferase domain. Multiple sequences alignment and phylogenetic analysis indicated that the Dv-1-FFT shared a high similarity with 1-FFT from Triticum aestivum, T. turgidum subsp. durum, Aegilops searsii and T. urartu, Ph-1-FFT and Lr-1-FFT were clustered into the same evolutionary branch, which was different from those of Dv-1-FFT. Furthermore, the plant expression vector pCAMBIA1300-35SN-Ph-1-FFT/Dv-1-FFT/Lr-1-FFT was constructed and transferred into tobacco (Nicotiana tabacum) cv. W38 via Agrobacterium-mediated transformation. The validation with PCR and RT-PCR assay showed that drought and cold tolerance was obviously improved in all types of transgenic tobacco compared with the wild type, and no significant difference between transgenic genotypes. Under drought and cold stresses, the contents of carbohydrate and proline were significantly higher in the transgenic tobacco lines than in the wild type, whereas, malondialdehyde content was significantly lower in the transgenic lines, which was no significant difference between the transgenic plants with 1-FFT from different species. These results suggest that Ph-1-FFT, Dv-1-FFT, and Lr-1-FFT are typical members of the gene family coding glycoside hydrolase 32 (GH32) and play a role in drought and cold resistance in tobacco.

Key words: 1-FFT gene, drought tolerance, cold tolerance, wheat relatives, transgenic tobacco

图1

植物表达载体p1300-35SN-Ph-1-FFT/Dv-1-FFT/Lr-1-FFT示意图 LB和RB: T-DNA的左、右边界; 35S°: CaMV 35S poly A; 35S2: 含双增强子的CaMV 35S启动子; p35S1: CaMV 35S启动子; Tnos: 终止子。"

图2

华山新麦草、簇毛麦和大赖草1-FFT基因PCR扩增产物电泳分析 M1: DL2000; M2: marker Ш. a: 基因保守区段扩增产物; b: 3¢ RACE扩增产物; c: 5¢ RACE 扩增产物; d: Ph-1-FFT (1~3泳道)、Dv-1-FFT (4~6泳道)和Lr-1-FFT (7~9泳道)的cDNA。"

图4

华山新麦草、大赖草和簇毛麦与其他物种1-FFT序列系统进化树分析 各节点处数值表示bootstrap值(迭代1000次)。比对物种为华山新麦草(Ph)、大赖草(Lr)、簇毛麦(Dv)、圆锥小麦(Tt)、西尔斯山羊草(As)、乌拉尔图小麦(Tu)、普通小麦(Ta)、粗山羊草(AE)和大麦(BA)。"

表1

不同来源1-FFT基因的cDNA及其编码产物的长度、分子量和等电点比较"

基因
Gene
cDNA长度
cDNA length (bp)
编码产物长度
Length of coding product (aa)
分子量
Mw (kD)
等电点
pI
Ph-1-FFT 1989 662 72.2 4.91
Dv-1-FFT 1950 649 71.3 5.00
Lr-1-FFT 1989 662 72.0 4.87

图3

华山新麦草、簇毛麦、大赖草及其他物种1-FFT序列分析 方框显示序列保守区; 星号(*)表示相同残基; 冒号(:)表示保守替换; 点号(.)表示半保守替换。比对物种有普通小麦(Ta)、圆锥小麦(Tt)、西尔斯山羊草(As)、乌拉尔图小麦(Tu)、簇毛麦(Dv)、华山新麦草(Ph)、粗山羊草(AE)、大麦(BA)和大赖草(Lr)。"

图5

T0代转基因植株的鉴定 A: 转基因植株的PCR鉴定; B: 转基因植株1-FFT的表达鉴定。M: D15000 marker; P: 阳性对照(质粒); WT: 阴性对照; NT: 转空载体的阴性对照; 1~12: 转基因植株。"

图6

转华山新麦草(Ph)、簇毛麦(Dv)和大赖草(Lr) 1-FFT基因烟草干旱和冷胁迫后的表型 a: 干旱胁迫处理35 d后; b: 冷胁迫(10°C 10 d, -20°C 35 min)处理后转移至温室培养7 d。NT为转空质粒对照。"

图7

转华山新麦草(Ph)、簇毛麦(Dv)和大赖草(Lr) 1-FFT基因烟草干旱和冷胁迫后的生理指标变化 NT为转空质粒对照。在相同条件下, 误差线上不同字母表示4类转基因植株间差异显著(P < 0.05)。"

[1] Zhang S J, Song G Q, Li Y L, Gao J, Liu J J, Fan Q Q, Huang C Y, Sui X X, Chu X S, Guo D , Others. Cloning of 9- cis-epoxy-carote- noid dioxygenase gene( TaNCED1) from wheat and its heterologous expression in tobacco. Biol Plant, 2014,58:89-98
[2] Bie X M, Wang K, She M Y, Du L, Zhang S X, Li J R, Gao X, Lin Z S, Ye X G . Combinational transformation of three wheat genes encoding fructan biosynthesis enzymes confers increased fructan content and tolerance to abiotic stresses in tobacco. Plant Cell Rep, 2012,31:2229-2238
doi: 10.1007/s00299-012-1332-y pmid: 22911265
[3] Khoshro H H, Taleei A, Bihamta M R, Shahbazi M, Abbasi A, Ramezanpour S S . Expression analysis of the genes involved in accumulation and remobilization of assimilates in wheat stem under terminal drought stress. Plant Growth Regul, 2014,74:165-176
doi: 10.1007/s10725-014-9908-x
[4] Ritsema T, Joling J, Smeekens S . Patterns of fructan synthesized by onion fructan: fructan 6G-fructosyltransferase expressed in tobacco BY2 cells-is fructan: fructan 1-fructosyltransferase needed in onion? New Phytol, 2003,160:61-67
doi: 10.1046/j.1469-8137.2003.00858.x
[5] Van den Ende W, Clerens S, Vergauwen R, Boogaerts D, Le Roy K, Arckens L, Van Laere A . Cloning and functional analysis of a high DP fructan: fructan 1-fructosyl transferase from Echinops ritro( Asteraceae): comparison of the native and recombinant enzymes. J Exp Bot, 2006,57:775-789
doi: 10.1093/jxb/erj065 pmid: 16449376
[6] 胡翠 . 果糖基转移酶融合基因转化玉米胚乳中果聚糖的积累 . 四川农业大学硕士学位论文, 四川成都, 2009
Hu C . Fructan Accumulation in Maize Endosperm Transformed with Fused Fructosyltransferase Genes. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China 2009 ( in Chinese with English abstract)
[7] Edelman J, Dickerson A G . The metabolism of fructose polymers in plants: transfructosylation in tubers of Helianthus tuberosus L. Biochem J, 1966,98:787-794
[8] Chalmers J, Johnson X, Lidgett A, Spangenberg G . Isolation and characterisation of a sucrose: sucrose 1-fructosyltransferase gene from perennial ryegrass ( Lolium perenne). J Plant Physiol, 2003,160:1385-1391
[9] Van Den Ende W, Van Wonterghem D, Verhaert P, Dewil E, Van Laere A . Purification and characterization of fructan: fructan fructosyl transferase from chicory ( Cichorium intybus L.) roots. Planta, 1996,199:493-502
doi: 10.1109/38.79453
[10] Van den Ende W, Van Laere A, Le Roy K, Vergauwen R, Boogaerts D, Figueiredo-Ribeiro R C , De Carvalho M A M. Molecular cloning and characterization of a high DP fructan: fructan 1-fructosyl transferase from Viguiera discolor( Asteraceae) and its heterologous expression in Pichia pastoris. Physiol Plant, 2005,125:419-429
doi: 10.1111/j.1399-3054.2005.00579.x
[11] Gao X, She M Y, Yin G X, Yu Y, Qiao W H, Du L P, Ye X G . Cloning and characterization of genes coding for fructan biosynthesis enzymes (FBEs) in Triticeae plants. Agric Sci China, 2010,9:313-324
doi: 10.1016/S1671-2927(09)60099-7
[12] 张小芸, 何近刚, 孙学辉, 吴金霞 . 转果聚糖合成关键酶基因多年生黑麦草的获得及抗旱性的提高. 草业学报, 2011,20(1):111-118
doi: 10.11686/cyxb20110116
Zhang X Y, He J G, Sun X H, Wu J X . Transformation of Lolium perenne with a fructan:fructan 1-fructosyltransferase gene from Agropyron cristatum and enhancement of drought tolerance in transgenic plants. Acta Pratacult Sin, 2011,20(1):111-118 (in Chinese with English abstract)
doi: 10.11686/cyxb20110116
[13] Knipp G, Honermeier B . Effect of water stress on proline accumulation of genetically modified potatoes ( Solanum tuberosum L.) generating fructans. J Plant Physiol, 2006,163:392-397
doi: 10.1016/j.jplph.2005.03.014 pmid: 16455352
[14] Li H J, Yang A F, Zhang X C, Gao F, Zhang J R . Improving freezing tolerance of transgenic tobacco expressing sucrose: sucrose 1-fructosyltransferase gene from Lactuca sativa. Plant Cell Tissue Organ Cult, 2007,89:37-48
[15] Ruelland E, Vaultier M, Zachowski A, Hurry V. Cold signalling and cold acclimation in plants. In: Jacquot J, Delseny M, eds. Advances in Botanical Research, Salt Lake City: Academic Press, 2009. pp 35-150
[16] Szabados L, Savouré A . Proline: a multifunctional amino acid. Trends Plant Sci, 2010,15:89-97
[17] Hellwege E M, Raap M, Gritscher D, Willmitzer L, Heyer A G . Differences in chain length distribution of inulin from Cynara scolymus and Helianthus tuberosus are reflected in a transient plant expression system using the respective 1-FFT cDNAs. FEBS Lett, 1998,427:25-28
[18] 陈漱阳, 张安静, 傅杰 . 普通小麦与华山新麦草的杂交. 遗传学报, 1991,18:508-512
Chen S Y, Zhang A J, Fu J . The hybridization between Triticum aestivum and Psathyrostachys huashanica. Acta Genet Sin, 1991,18:508-512 (in Chinese with English abstract)
[19] Zhang W, Zhang R, Feng Y, Bie T, Chen P . Distribution of highly repeated DNA sequences in Haynaldia villosa and its application in the identification of alien chromatin. Chin Sci Bull, 2013,58:890-897
[20] 刘成 . 多年生簇毛麦基因组新重复序列的分离及其在小麦抗病新种质鉴定中的应用. 电子科技大学博士学位论文, 四川成都, 2010
Liu C . Isolate New Repetitive DNA Sequence from Daypyrum breviaristatum Genome and Its Application in Identifying New Resistant Wheat Germplasm. PhD Dissertation of Electronic Science and Technology of China, Chengdu, Sichuan, China 2010 ( in Chinese with English abstract)
[21] De Pace C, Snidaro D, Ciaffi M, Vittori D, Ciofo A, Cenci A, Tanzarella O A, Qualset C O, Mugnozza G S . Introgression of Dasypyrum villosum chromatin into common wheat improves grain protein quality. Euphytica, 2001,117:67-75
doi: 10.1023/A:1004095705460
[22] Mcguire P E, Dvorak J . High salt-tolerance potential in wheatgrasses. Crop Sci, 1981,21:702-705
doi: 10.2135/cropsci1981.0011183X002100050018x
[23] Pilon-Smits E A, Ebskamp M J, Paul M J, Jeuken M J, Weisbeek P J, Smeekens S C . Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol, 1995,107:125-130
doi: 10.1104/pp.107.1.33 pmid: 12228347
[24] Heyer A G, Wendenburg R . Gene cloning and functional characterization by heterologous expression of the fructosyltransferase of Aspergillus sydowi IAM 2544. Appl Environ Microbiol, 2001,67:363-370
doi: 10.1128/AEM.67.1.363-370.2001 pmid: 11133467
[25] Chen H, Nelson R S, Sherwood J L . Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection. Biotechniques, 1994,16:664-668
[26] He X L, Chen Z Z, Wang J W, Li W X, Zhao J X, Wu J, Wang Z H, Chen X H . A sucrose:fructan-6-fructosyltransferase ( 6-SFT) gene from Psathyrostachys huashanica confers abiotic stress tolerance in tobacco. Gene, 2015,570:239-247
[27] 贺晓岚, 王建伟, 李文旭, 陈真真, 赵继新, 武军, 王中华, 陈新宏 . 大赖草6-SFT基因的克隆及其转基因烟草抗旱和抗寒性分析. 作物学报, 2016,42:389-398
He X L, Wang J W, Li W X, Chen Z Z, Zhao J X, Wu J, Wang Z H, Chen X H . Cloning of 6-SFT gene from Leymus racemosus and analysis of tolerance to drought and cold stresses in transgenic tobacco. Acta Agron Sin, 2016,42:389-398 (in Chinese with English abstract)
[28] Fales F W . The assimilation and degradation of carbohydrates by yeast cells. J Biol Chem, 1951,193:113-124
doi: 10.1515/bchm2.1951.286.1-6.270 pmid: 14907695
[29] Bates L S, Waldren R P, Teare I D . Rapid determination of free proline for water-stress studies. Plant & Soil, 1973,39:205-207
[30] Suárez-González E M, López M G, Délano-Frier J P, Gómez-Leyva J F . Expression of the 1-SST and 1-FFT genes and consequent fructan accumulation in Agave tequilana and A. inaequidens is differentially induced by diverse (a)biotic-stress related elicitors. J Plant Physiol, 2014,171:359-372
[31] Lasseur B, Schroeven L, Lammens W, Le Roy K, Spangenberg G, Manduzio H, Vergauwen R, Lothier J , Prud’Homme M P, Van den Ende W. Transforming a fructan:fructan 6G-fructosyltransferase from perennial ryegrass into a sucrose:sucrose 1-fructosyltransferase. Plant Physiol, 2009,149:327-339
doi: 10.1104/pp.108.125559
[32] Chazen O, Neumann P M . Hydraulic signals from the roots and rapid cell-wall hardening in growing maize ( Zea mays L.) leaves are primary responses to polyethylene glycol-induced water deficits. Plant Physiol, 1994,104:1385-1392
[33] Ravikumar G, Manimaran P, Voleti S R, Subrahmanyam D, Sundaram R M, Bansal K C, Viraktamath B C, Balachandran S M . Stress-inducible expression of AtDREB1A transcription factor greatly improves drought stress tolerance in transgenic indica rice. Transgenic Res, 2014,23:421-439
doi: 10.1007/s11248-013-9776-6 pmid: 24398893
[34] Kawakami A, Sato Y, Yoshida M . Genetic engineering of rice capable of synthesizing fructans and enhancing chilling tolerance. J Exp Bot, 2008,59:793-802
doi: 10.1093/jxb/erm367
[1] 王兴荣, 李玥, 张彦军, 李永生, 汪军成, 徐银萍, 祁旭升. 青稞种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2022, 48(5): 1279-1287.
[2] 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528.
[3] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[4] 衡友强,游西龙,王艳. 费尔干猪毛菜病程相关蛋白SfPR1a基因的异源表达增强了烟草对干旱、盐及叶斑病的抗性[J]. 作物学报, 2020, 46(4): 503-512.
[5] 徐银萍, 潘永东, 刘强德, 姚元虎, 贾延春, 任诚, 火克仓, 陈文庆, 赵锋, 包奇军, 张华瑜. 大麦种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2020, 46(3): 448-461.
[6] 陈杉彬, 孙思凡, 聂楠, 杜冰, 何绍贞, 刘庆昌, 翟红. 甘薯IbCAF1基因的克隆及耐盐性、抗旱性鉴定[J]. 作物学报, 2020, 46(12): 1862-1869.
[7] 张海燕,解备涛,汪宝卿,董顺旭,段文学,张立明. 不同甘薯品种抗旱性评价及耐旱指标筛选[J]. 作物学报, 2019, 45(3): 419-430.
[8] 张笑笑,潘映红,任富莉,蒲伟军,王道平,李玉斌,陆平,李桂英,朱莉. 基于多重表型分析的准确评价高粱抗旱性方法的建立[J]. 作物学报, 2019, 45(11): 1735-1745.
[9] 李龙,毛新国,王景一,昌小平,柳玉平,景蕊莲. 小麦种质资源抗旱性鉴定评价[J]. 作物学报, 2018, 44(7): 988-999.
[10] 吕品, 于海峰, 侯建华. 利用抗旱选择导入系定位向日葵产量性状QTL[J]. 作物学报, 2018, 44(03): 385-396.
[11] 王瑞霞, 闫长生, 张秀英, 孙果忠, 钱兆国, 亓晓蕾, 牟秋焕, 肖世和. 春季低温对小麦产量和光合特性的影响[J]. 作物学报, 2018, 44(02): 288-296.
[12] 方彦,孙万仓,武军艳,刘自刚,董云,米超,马骊,陈奇,何辉立. 北方白菜型冬油菜的膜脂脂肪酸组分和ATPase活性对温度的响应[J]. 作物学报, 2018, 44(01): 95-104.
[13] 汪灿,周棱波,张国兵,张立异,徐燕,高旭,姜讷,邵明波. 薏苡种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2017, 43(09): 1381-1394.
[14] DO Thanh-Trung,李健,张风娟,杨丽涛,李杨瑞,邢永秀. 甘蔗与抗旱性相关差异蛋白质组分析[J]. 作物学报, 2017, 43(09): 1337-1346.
[15] 许耀照,曾秀存,张芬琴,孙佳,孙万仓,武军艳,方彦,刘自刚,孙柏林. 白菜型冬油菜叶片结构和光合特性对冬前低温的响应[J]. 作物学报, 2017, 43(03): 432-441.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!