欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (6): 796-813.doi: 10.3724/SP.J.1006.2018.00796

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米雌穗发育杂种优势相关miRNA的研究

王琪月1,孟淑君1,张柯2,张战辉1,汤继华1,丁冬1,*()   

  1. 1 河南农业大学农学院 / 省部共建小麦玉米作物学国家重点实验室, 河南郑州 450002
    2 河南省农业科学院, 河南郑州450002
  • 收稿日期:2017-09-29 接受日期:2018-03-26 出版日期:2018-06-12 网络出版日期:2018-04-18
  • 通讯作者: 丁冬
  • 基金资助:
    本研究由国家自然科学基金项目(31370033);国家高技术研究发展计划项目资助(2012AA10A305)

Investigation of Maize miRNA Involved in Developing-ear Heterosis

Qi-Yue WANG1,Shu-Jun MENG1,Ke ZHANG2,Zhan-Hui ZHANG1,Ji-Hua TANG1,Dong DING1,*()   

  1. 1 College of Agronomy, Henan Agricultural University / Key Laboratory of Wheat and Maize Crops Science, Zhengzhou 450002, Henan, China
    2 Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
  • Received:2017-09-29 Accepted:2018-03-26 Published:2018-06-12 Published online:2018-04-18
  • Contact: Dong DING
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31370033);the National High Technology Research and Development Program of China(2012AA10A305)

摘要:

杂种优势已广泛应用于玉米育种, 在提高玉米产量、品质以及增强抗逆性等方面起到了重要的作用, 然而杂种优势的分子机制尚不清楚。植物miRNA主要在转录和转录后水平调节基因的表达。为阐明miRNA是否及如何对玉米雌穗发育杂种优势产生影响, 本研究对玉米杂交种郑单958及其亲本自交系(昌7-2和郑58)进行了高通量miRNA测序和降解组测序。取玉米雌穗花序分生组织(IM)发育为成对小穗分生组织(SPM), 进而产生小穗分生组织(SM), 及小花分生组织(FM)将3个不同时期的雌穗样品用于miRNA建库测序, 鉴定出16个miRNA家族中的81个保守miRNA为非加性表达, 认为是与雌穗发育杂种优势形成相关的miRNA; 3个阶段中分别检测到80.30%、56.06%和48.10%的非加性表达的miRNA被显性或超显性抑制。鉴定出8种新的miRNA, 属于7个miRNA家族。通过雌穗降解组测序, 发现在郑单958及其亲本自交系中共同检测到的miRNA靶向42个基因的82个转录本。根据测序结果构建了miRNA参与玉米雌穗杂种优势的模型, 并推测在雌穗发育早期阶段杂交种雌穗的miRNA的普遍抑制导致其靶基因上调表达, 随着发育进程miRNA逐步解除抑制, 带来其靶基因表达量的逐步减少, 这种miRNA与其靶基因的拮抗关系也许与玉米雌穗发育杂种优势形成有关。

关键词: 雌穗发育, 杂种优势, miRNA, 降解组测序, 玉米

Abstract:

Heterosis has been utilized widely in maize breeding; it plays an important role in increasing yield, improving quality and enhancing stresses resistance. However, the molecular mechanism of heterosis is far from clear. MicroRNAs (miRNAs) act as key regulating factors of gene expression in post-transcriptional level. To investigate whether miRNA-dependent gene regulation is responsible for heterosis during maize ear development, we performed an illumine miRNA deep-sequencing on the most widely-planted elite hybrid Zhengdan 958 and its parental inbred lines (Chang 7-2 and Zheng 58) in China. The ear samples at the developmental stages of inflorescence meristem (IM) producing spikelet pair meristems (SPM), resulting in spikelet meristems (SMs), and floral meristems (FM) were collected for RNA library construction. As a result, 81 conserved miRNAs belonging to 16 miRNA families were identified which were non-additively expressed. At the three stages, 80.30%, 56.06%, and 48.10% of these non-additively expressed miRNAs were repressed ever dominantly or over-dominantly. A total of 82 target transcripts from 42 genes of conserved miRNAs among Zhengdan 958 and its parents were detected via whole genome degradome sequencing. Additionally, eight novel maize miRNAs belonging to seven miRNA families were identified using stringent criteria. Global repression of miRNAs in hybrid ears at the early stage might lead to the up-regulated expressing of their target genes. Moreover, the in-step de-repression of given miRNA family members may be the reason of enhanced repression of their target genes. These results revealed, at least in part, the involvement of maize miRNAs in hybrids leads to higher ear developing vigor compared with its parental lines.

Key words: ear development, heterosis, miRNA, degradome, Zea mays L.

表1

玉米雌穗杂种优势相关miRNA和其靶基因的检测引物序列"

引物
Primer
引物序列
Primer sequence (5°-3°)
zma-miR159a/b RT F: GTCGTATCCAGTGCAGGGTCCGAGG; R: TATTCGCACTGGATACGACCAGAGC
zma-miR159a/b PCR CGACCTTTGGATTGAAGGGA
zma-miR160a-e,gRT F: GTCGTATCCAGTGCAGGGTCCGAGG; R: TATTCGCACTGGATACGACTGGCAT
zma-miR160a-e,gPCR GTAAGTGCCTGGCTCCCTGT
zma-miR167a-dRT F: GTCGTATCCAGTGCAGGGTCCGAGG; R: TATTCGCACTGGATACGACTAGATC
zma-miR167a-dPCR TCTAGTGAAGCTGCCAGCAT
zma-miR168a/b RT F: GTCGTATCCAGTGCAGGGTCCGAGG; R: TATTCGCACTGGATACGACGTCCCG
zma-miR168a/b PCR CATAGTCGCTTGGTGCAGAT
zma-miR169a/b RT F: GTCGTATCCAGTGCAGGGTCCGAGG; R: TATTCGCACTGGATACGACTCGGCA
zma-miR169a/b PCR CGTAGCAGCCAAGGATGACT
zma-miR172a-dRT F: GTCGTATCCAGTGCAGGGTCCGAGG; R: TATTCGCACTGGATACGACTGCAGC
zma-miR172a-dPCR GCGCCAGAATCTTGATGAT
zma-miR172eRT F: GTCGTATCCAGTGCAGGGTCCGAGG; R: TATTCGCACTGGATACGACATGCAG
zma-miR172ePCR CCGTCGGAATCTTGATGATG
zma-miR390a/b RT F: GTCGTATCCAGTGCAGGGTCCGAGG; R: TATTCGCACTGGATACGACGGCGCT
zma-miR390a/b PCR GCATCAAGCTCAGGAGGGAT
Universal Reverse ATTCATGAAAGGCGGATGGC
Y-tubulin-A TGTCGTCCAACCTTACAACTCACT
Y-tubulin-S TCTCCAGGGTCCTCCATTCC
T159a/b(GRMZM2G423833_T01)-A TGGTCTGGCTGACTGTTGTT
T159a/b(GRMZM2G423833_T01)-S CTTGTGAGCGTGATGGAAAT
T160a-e,g(AC207656.3_FGT002)-A AACCGAAACTGCCGAACC
T160a-e,g(AC207656.3_FGT002)-S TGACCATACTGACGGACGAGA
T167a-d(GRMZM2G078274_T03)-A CAGGGATGGATACATAGGAAAG
T167a-d(GRMZM2G078274_T03)-S GAATCAACCGCAGGAGAAAG
#T168a/b(GRMZM2G361518_T01)-A ACAACAGCAGCAATGGAAGG
#T168a/b(GRMZM2G361518_T01)-S AAGGTCGGAGGAAGGAACAC
T169a/b(GRMZM2G000686_T01)-A TATGATATGGCGAAGGACTG
T169p(GRMZM2G000686_T01)-S CATCAAGAAGCGTCTGGAAT
T172a-d(GRMZM5G862109_T01)-A GCGATAAATAGCGTGGTGGG
T172a-d(GRMZM5G862109_T01)-S CTTCTCGTCCTCGGTCCTCC
T172e(GRMZM2G700665_T02)-A CGTTGTTGCGGTACATTTAGGC
T172e(GRMZM2G700665_T02)-S GTGCAGGATGGTCGTCAGGG
T390a/b(GRMZM2G084821_T02)-A CCCGGTGGCATAATAACTGC
T390a/b(GRMZM2G084821_T02)-S TGGAGCCGAATAATGGAAGC

图1

miRNA的长度分布"

表2

共检测到的保守miRNA的表达趋势"

miRNA IM to SPM SPM to SM FM miRNA IM to SPM SPM to SM FM
zma-miR156a-5p - - - - - zma-miR166m-3p - - + - + +
zma-miR156b-5p - - - - - - zma-miR166n-3p - - + - -
zma-miR156c - - - - - zma-miR167a-5p + - - - - -
zma-miR156d-5p - - - - - - zma-miR167b-5p + - - - - -
zma-miR156f-5p - - - - - - zma-miR167c-5p + - - - - -
zma-miR156g-5p - - - - - - zma-miR167d-5p + - - - - -
zma-miR156j-5p + + + - - zma-miR167e-5p + - - - - -
zma-miR156k-5p - - - - - - zma-miR167f-5p + - - - - -
zma-miR159a-3p - - - + + zma-miR167g-5p + - - - - -
zma-miR159b-3p - - - + + zma-miR167h-5p + - - - - -
zma-miR159f-3p - - - + + zma-miR167i-5p + - - - - -
zma-miR159j-3p - - - + + zma-miR167j-5p + - - - - -
zma-miR159k-3p - - - + + zma-miR168a-5p + - + + + +
zma-miR160a-5p - - + + + + zma-miR168b-5p + - + + + +
zma-miR160b-5p - - + + + + zma-miR169a-5p - - + + + +
zma-miR160c-5p - - + + + + zma-miR169b-5p - - + + + +
zma-miR160d-5p - - + + + + zma-miR169c-5p - - + + +
zma-miR160e - - + + + + zma-miR169r-5p - - + + +
zma-miR160f-5p - - + + + + zma-miR171d-3p - - - - -
zma-miR160g-5p - - + + + + zma-miR171e-3p - - - - -
zma-miR162-3p - - - - + - zma-miR171i-3p - - - - -
zma-miR164a-5p + - - + + zma-miR171j-3p - - - - -
zma-miR164b-5p + - - + + zma-miR171l-3p + - - - + +
zma-miR164c-5p + - - + + zma-miR171m-3p + - - - + +
zma-miR164d-5p + - - + + zma-miR172a - - + + - -
zma-miR164e-5p + + + - - zma-miR172b-3p - - + + - -
miRNA IM to SPM SPM to SM FM miRNA IM to SPM SPM to SM FM
zma-miR164f-5p + - - + + zma-miR172c-3p - - + + - -
zma-miR164g-5p + - - + + zma-miR172d-3p - - + + - -
zma-miR164h-5p + - - + + zma-miR172e - - + - -
zma-miR166a-3p - - + - + + zma-miR319a-3p - - + - -
zma-miR166b-3p - - + - + + zma-miR319b-3p - - + - -
zma-miR166c-3p - - + - + + zma-miR319c-3p - - + - -
zma-miR166d-3p - - + - + + zma-miR319d-3p - - + - -
zma-miR166e - - + - + + zma-miR390a-5p + + + +
zma-miR166f - - + - + + zma-miR390b-5p + + + +
zma-miR166g-3p - - + - + + zma-miR444a - - + - - -
zma-miR166h-3p - - + - + + zma-miR444b - - + - - -
zma-miR166i-3p - - + - + + zma-miR528a-5p + + + - + -
zma-miR166j-3p - - + - - zma-miR528b-5p + + + - + -
zma-miR166k-3p - - + - - zma-miR827-3p + - - -- - -
zma-miR166l-3p - - + - + +

表3

降解组测序检测到的玉米雌穗杂种优势相关miRNA的靶基因"

miRNA 靶基因
Target gene
分值
Score
校准范围
Alignment
range
切割位点
Cleavage
site
P
P-value
GO注释
Annotation for GO
zma-miR156 GRMZM2G414805_T02 1 1546-1565 1556 0.056054 SPL protein 11
zma-miR156 GRMZM2G414805_T03 1 1875-1894 1885 0.056054 SPL protein 11
zma-miR156 GRMZM2G414805_T04 1 1353-1372 1363 0.056054 SPL protein 11
zma-miR156 GRMZM2G414805_T05 1 2100-2119 2110 0.056054 SPL protein 11
zma-miR159 AC209015.3_FGT004 2.5 328-348 339 0.019582 non
zma-miR159 GRMZM2G028054_T02 3 1419-1439 1430 0.034972 transcription factor GAMYB
zma-miR159 GRMZM2G028054_T03 3 1360-1380 1371 0.034972 transcription factor GAMYB
zma-miR159 GRMZM2G075064_T01 2.5 851-871 862 0.019582 DNA binding
zma-miR159 GRMZM2G423833_T01 2 905-925 916 0.005424 DNA binding
zma-miR159 GRMZM2G139688_T01 3.5 1399-1419 1410 0.031147 DNA binding
zma-miR160 AC207656.3_FGT002 1 1350-1370 1361 0.037830 regulation of transcription
zma-miR160 GRMZM2G081406_T01 2 1499-1519 1510 0.005424 regulation of transcription
zma-miR160 GRMZM2G153233_T01 1 1652-1672 1663 0.037830 auxin response factor 2
zma-miR160 GRMZM2G159399_T01 1 1746-1766 1757 0.037830 regulation of transcription
zma-miR160 GRMZM2G390641_T01 1 1790-1810 1801 0.037830 regulation of transcription
zma-miR160 GRMZM2G390641_T02 1 1690-1710 1701 0.037830 regulation of transcription
zma-miR160 GRMZM5G808366_T01 1.5 1295-1315 1306 0.005915 auxin response factor 5
zma-miR160 GRMZM2G063522_T01 2 895-915 906 0.007152 regulation of transcription
zma-miR164 GRMZM2G139700_T01 2 737-757 748 0.026826 Nam2 protein
miRNA 靶基因
Target gene
分值
Score
校准范围
Alignment
range
切割位点
Cleavage
site
P
P-value
GO注释
Annotation for GO
zma-miR164 GRMZM2G393433_T01 2 854-874 865 0.026826 CUC2
zma-miR164 GRMZM2G393433_T02 2 814-834 825 0.026826 CUC2
zma-miR166 GRMZM2G003509_T01 3 736-756 747 0.068720 regulation of transcription
zma-miR166 GRMZM2G003509_T02 3 805-825 816 0.068720 regulation of transcription
zma-miR166 GRMZM2G042250_T01 3 628-648 639 0.068720 rolled leaf 2
zma-miR166 GRMZM2G042250_T02 3 714-734 725 0.068720 rolled leaf 2
zma-miR166 GRMZM2G042250_T03 3 628-648 639 0.068720 rolled leaf 2
zma-miR166 GRMZM2G042250_T04 3 628-648 639 0.068720 rolled leaf 2
zma-miR166 GRMZM2G109987_T01 3 1039-1059 1050 0.068720 transcription factor activity
zma-miR166 GRMZM2G109987_T02 3 1039-1059 1050 0.068720 transcription factor activity
zma-miR166 GRMZM2G109987_T03 3 1039-1059 1050 0.068720 transcription factor activity
zma-miR166 GRMZM2G109987_T04 3 1039-1059 1050 0.068720 transcription factor activity
zma-miR166 GRMZM2G109987_T05 3 774-794 785 0.068720 transcription factor activity
zma-miR166 GRMZM2G123644_T01 4 545-565 556 0.020551 DNA binding
zma-miR166 GRMZM2G178102_T01 3 1035-1055 1046 0.068720 transcription factor activity
zma-miR166 GRMZM2G336718_T01 3 105-124 115 0.013260 DNA binding
zma-miR167 GRMZM2G078274_T03 4 2531-2552 2542 0.034017 regulation of transcription
zma-miR169 GRMZM2G000686_T01 3.5 2120-2140 2131 0.057604 CCAAT-binding factor
zma-miR169 GRMZM2G000686_T02 3.5 1010-1030 1021 0.057604 CCAAT-binding factor
zma-miR169 GRMZM2G000686_T03 3.5 1006-1026 1017 0.057604 CCAAT-binding factor
zma-miR169 GRMZM2G000686_T04 3.5 962-982 973 0.057604 CCAAT-binding factor
zma-miR169 GRMZM2G000686_T05 3.5 934-954 945 0.057604 CCAAT-binding factor
zma-miR169 GRMZM2G000686_T06 3.5 890-910 901 0.057604 CCAAT-binding factor
zma-miR169 GRMZM2G000686_T08 3.5 1106-1126 1117 0.057604 CCAAT-binding factor
zma-miR169 GRMZM2G000686_T09 3.5 991-1011 1002 0.057604 CCAAT-binding factor
zma-miR169 GRMZM2G000686_T10 3.5 1300-1320 1311 0.057604 CCAAT-binding factor
zma-miR169 GRMZM2G091964_T01 4 1317-1338 1329 0.010329 nuclear transcription factor Y subunit A-1
zma-miR169 GRMZM2G091964_T02 4 1314-1335 1326 0.010329 nuclear transcription factor Y subunit A-1
zma-miR169 GRMZM2G091964_T03 4 1429-1450 1441 0.010329 nuclear transcription factor Y subunit A-1
zma-miR169 GRMZM2G165488_T01 3 1586-1606 1597 0.068720 transcription factor activity
zma-miR169 GRMZM2G165488_T02 3 2140-2160 2151 0.068720 transcription factor activity
zma-miR169 GRMZM2G165488_T03 3 1357-1377 1368 0.068720 transcription factor activity
zma-miR169 GRMZM5G829103_T02 3 1815-1835 1826 0.068720 NTF-Y subunit A-10
zma-miR169 GRMZM5G829103_T03 3 1321-1341 1332 0.068720 NTF-Y subunit A-10
zma-miR169 GRMZM5G829103_T04 3 1965-1985 1976 0.068720 NTF-Y subunit A-10
zma-miR169 GRMZM5G829103_T06 3 1288-1308 1299 0.068720 NTF-Y subunit A-10
zma-miR169 GRMZM5G829103_T07 3 1360-1380 1371 0.068720 NTF-Y subunit A-10
zma-miR171 GRMZM2G037792_T01 1 1322-1342 1333 0.056205 hypothetical protein
zma-miR171 GRMZM2G098800_T01 1 920-940 931 0.056205 hypothetical protein
zma-miR171 GRMZM2G098800_T02 1 1391-1411 1402 0.056205 hypothetical protein
zma-miR171 GRMZM2G110579_T01 1 1078-1098 1089 0.056205 putative uncharacterized protein
zma-miR171 GRMZM2G418899_T02 1 45-65 56 0.056205 non
zma-miR171 GRMZM5G825321_T01 1 507-527 518 0.056205 putative uncharacterized protein
zma-miR171 GRMZM2G418899_T01 1 45-65 56 0.056205 non
miRNA 靶基因
Target gene
分值
Score
校准范围
Alignment
range
切割位点
Cleavage
site
P
P-value
GO注释
Annotation for GO
zma-miR171 GRMZM5G825321_T02 1 1460-1480 1471 0.056205 putative uncharacterized protein
zma-miR172 GRMZM2G076602_T01 3 898-917 908 0.039256 putative uncharacterized protein
zma-miR172 GRMZM2G174784_T01 3 2242-2261 2252 0.039256 regulation of transcription
zma-miR172 GRMZM2G174784_T03 3 2367-2386 2377 0.039256 regulation of transcription
zma-miR172 GRMZM5G862109_T01 1 1559-1578 1569 0.050120 indeterminate spikelet1
zma-miR172 GRMZM5G862109_T02 1 1685-1704 1695 0.050120 indeterminate spikelet1
zma-miR172 GRMZM5G862109_T03 1 1671-1690 1681 0.050120 indeterminate spikelet1
zma-miR172 GRMZM2G174784_T02 3 2370-2389 2380 0.039256 regulation of transcription
zma-miR172 GRMZM2G700665_T02 1 1773-1792 1783 0.050120 AP2 transcription factor
zma-miR319 AC205574.3_FGT006 4 1456-1475 1466 0.023935 mutant cincinnata
zma-miR319 GRMZM2G015037_T01 4 1735-1754 1745 0.023935 glutamate 5-kinase activity
zma-miR319 GRMZM2G020805_T01 3 1429-1448 1439 0.008860 hypothetical protein
zma-miR319 GRMZM2G180568_T01 3.5 852-871 862 0.023453 transcribed locus
zma-miR319 GRMZM2G412073_T01 3.5 232-251 242 0.023453 hypothetical protein
zma-miR390 GRMZM2G084821_T02 4 1210-1230 1221 0.047298 hypothetical protein
zma-miR390 GRMZM2G084821_T04 4 611-631 622 0.047298 hypothetical protein
zma-miR390 GRMZM2G084821_T05 4 634-654 645 0.047298 hypothetical protein
zma-miR528 GRMZM2G107562_T01 2.5 570-589 580 0.004932 copper ion binding
zma-miR827 GRMZM2G044788_T01 2.5 245-265 256 0.001304 hypothetical protein

图2

新的玉米miRNA的前体茎环结构 miR-n7a和miR-n7b享有共同的pre-miRNA和成熟miRNA序列, 它们的特征被各自的pre-miRNA的基因组位置所区分, 蓝色代表已配对, 红色表示未配对, 绿色代表成熟的新的miRNA。"

图3

新miRNA靶基因功能分类 图中数字表示基因个数。"

表4

新的miRNA及其特性"

新的miRNA
Novel miRNA
序列
Sequence (5°-3°)
位置
Location
自由能指数
MFEI
IM to SPM SPM to SM FM
zma-miR-n1 AAAAAGAAACGGAGAGAGTAG 1:104607732:104607838: + 1.615137 D + -
zma-miR-n2 GTTTCTTTTTATTAGTCGTTG 4:21820530:21820628: - 1.300130 D - - -
zma-miR-n3 ATCCGACGCAAACGAACAAGG 10:1924407:1924548: - 1.027248 -- + +
zma-miR-n4 ATCCGACGCAAACGAACAAGG 4:215015818:215015940: - 0.953020 -- + +
zma-miR-n5 ACACAGTTGCTGTGCTCGCCG 9:149911503:149911831: + 0.947278 D + + + +
zma-miR-n6 AGGGCTTGTTCGTTTACGTCG 4:189032126:189032271: - 0.875367 ++ -- + +
zma-miR-n7a GCCTGAGGTCGGACAGTCCGC 1:52926508:52926666: - 0.874422 - D -
zma-miR-n7b GCCTGAGGTCGGACAGTCCGC 1:52934608:52934766: - 0.874422 - D -

"

图4

玉米雌穗杂种优势相关miRNA的表达趋势"

图5

miRNA对玉米雌穗发育的杂种优势的调控网络"

表6

测序获得的表达量数据"

NA H16-RPM H17-RPM H18-RPM H19-RPM H20-RPM H21-RPM H22-RPM H23-RPM H24-RPM
zma-miR1432-5p 0.199941767 0.177102302 0.2273795 0.6338742 0 5.0137835 0.11827416 0.1136377 0.61734739
zma-miR156a-5p 0.649810743 0.590341006 1.7053465 1.8439978 1.7981694 1.3624412 0.17741123 0.3409131 1.23469477
zma-miR156b-5p 3.548966364 1.889091218 2.1032607 29.56159 4.7201947 43.434625 2.48375726 1.4772903 1.32967129
zma-miR156c 0.649810743 0.590341006 1.7053465 1.8439978 1.7981694 1.3624412 0.11827416 0.3409131 1.23469477
zma-miR156d-5p 4.398718873 2.538466325 2.7853993 29.964964 5.4844167 43.707113 3.78477297 2.386392 1.42464781
zma-miR156e-5p 0.29991265 0.413238704 0.8526732 0.2304997 0.6293593 1.1444506 0.11827416 0.1704566 0.94976521
zma-miR156f-5p 0.599825301 0.472272805 1.6485016 1.8439978 1.7082609 1.3079435 0.11827416 0.3409131 1.09222999
zma-miR156g-5p 0.599825301 0.472272805 1.6485016 1.8439978 1.7082609 1.3079435 0.11827416 0.3409131 1.09222999
zma-miR156h-5p 0.29991265 0.413238704 0.8526732 0.2304997 0.6293593 1.1444506 0.11827416 0.1704566 0.94976521
zma-miR156i-5p 0.29991265 0.413238704 0.7958284 0.2304997 0.6293593 1.1444506 0.11827416 0.1704566 0.94976521
zma-miR156j-5p 7.947685237 5.549205454 19.384105 8.7589895 35.918434 17.60274 19.8700581 39.148192 7.36068037
zma-miR156k-5p 33.59021685 20.1306283 6.1392473 52.784437 8.8559844 13.133933 23.6548311 6.4773496 3.65659605
zma-miR156l-5p 0.29991265 0.413238704 0.7958284 0.2304997 0.6293593 1.1444506 0.11827416 0.1704566 0.90227695
zma-miR159a-3p 110.8177243 61.6906351 164.3954 69.207542 37.851466 166.05433 56.8898687 60.512082 759.384772
zma-miR159b-3p 110.7677389 61.6906351 164.3954 69.207542 37.851466 166.05433 56.8898687 60.512082 759.289796
zma-miR159c-3p 0.099970883 0.118068201 0.3410693 0 0.0449542 0.2724882 0 0.0568189 0.75981217
zma-miR159d-3p 0.099970883 0.118068201 0.3410693 0 0.0449542 0.2724882 0 0.0568189 0.75981217
zma-miR159f-3p 110.5677971 61.631601 164.3954 69.207542 37.851466 165.61835 56.8898687 60.512082 758.957378
zma-miR159j-3p 110.5178117 61.631601 164.3954 69.207542 37.851466 165.61835 56.8898687 60.512082 758.862402
zma-miR159k-3p 110.5178117 61.631601 164.3954 69.207542 37.851466 165.61835 56.8898687 60.512082 758.862402
zma-miR160a-5p 8.347568771 0.767443307 0.2842244 0.4609994 1.1688101 1.1989482 2.83857973 6.6478062 1.94701868
zma-miR160b-5p 8.347568771 0.767443307 0.2842244 0.4609994 1.1688101 1.1989482 2.83857973 6.6478062 1.94701868
zma-miR160c-5p 8.347568771 0.767443307 0.2842244 0.4609994 1.1688101 1.1989482 2.83857973 6.6478062 1.94701868
zma-miR160d-5p 8.597495979 0.826477408 0.2842244 0.6338742 1.1688101 1.3624412 3.07512804 6.6478062 1.94701868
NA H16-RPM H17-RPM H18-RPM H19-RPM H20-RPM H21-RPM H22-RPM H23-RPM H24-RPM
zma-miR160e 8.597495979 0.826477408 0.2842244 0.6338742 1.1688101 1.3624412 3.07512804 6.6478062 1.94701868
zma-miR160f-5p 8.597495979 0.826477408 0.2842244 0.6338742 1.1688101 1.3624412 3.07512804 6.6478062 1.94701868
zma-miR160g-5p 8.597495979 0.826477408 0.2842244 0.6338742 1.1688101 1.3624412 3.01599096 6.6478062 1.94701868
zma-miR162-3p 5.548384033 0.826477408 1.8190362 1.7863729 3.9559727 7.575173 2.1289348 1.5341091 4.3214317
zma-miR164a-5p 138.4596736 121.6692813 472.32413 101.36225 53.405632 262.07919 150.385589 62.61438 583.773185
zma-miR164b-5p 138.2597319 121.6692813 472.21044 101.247 53.315723 262.07919 150.326451 62.500742 583.725697
zma-miR164c-5p 138.2597319 121.6692813 472.21044 101.247 53.315723 262.07919 150.326451 62.500742 583.725697
zma-miR164d-5p 138.4596736 121.6692813 472.32413 101.36225 53.405632 262.07919 150.385589 62.61438 583.773185
zma-miR164e-5p 1.349606927 2.833636828 0.5116039 6.5116172 1.4834898 4.9592859 5.91370777 4.1477765 0.61734739
zma-miR164f-5p 138.4596736 121.6692813 472.32413 101.36225 53.360677 262.02469 150.385589 62.61438 583.725697
zma-miR164g-5p 138.2597319 121.6692813 472.21044 101.247 53.315723 262.07919 150.326451 62.500742 583.725697
zma-miR164h-5p 138.159761 121.3741108 471.86937 100.95888 53.135906 261.8067 150.267314 62.330286 583.013373
zma-miR166a-3p 8373.411244 2051.316927 5638.3302 6288.3206 2007.836 7944.231 3770.52094 2120.082 14058.0447
zma-miR166b-3p 8373.211302 2051.316927 5638.3302 6288.3206 2007.836 7944.3945 3770.4618 2120.082 14058.0447
zma-miR166c-3p 8373.161317 2051.316927 5638.3302 6288.3206 2007.836 7944.231 3770.40266 2120.082 14057.9972
zma-miR166d-3p 8373.211302 2051.316927 5638.3302 6288.3206 2007.836 7944.3945 3770.4618 2120.082 14058.0447
zma-miR166e 8373.261288 2051.316927 5638.3302 6288.3206 2007.8809 7944.7215 3770.4618 2120.082 14058.3296
zma-miR166f 8344.269731 2030.77306 5603.4843 6260.6606 1996.6424 7897.3631 3746.39301 2103.0932 13980.4489
zma-miR166g-3p 8344.219746 2030.832094 5603.5412 6260.6606 1996.5075 7897.3631 3746.39301 2102.9795 13980.4014
zma-miR166h-3p 8344.319717 2030.77306 5603.4843 6260.6606 1996.6424 7897.3631 3746.39301 2103.0932 13980.4489
zma-miR166i-3p 8372.011652 2051.021756 5636.2838 6287.1105 2007.7461 7940.4707 3769.33819 2119.8547 14050.874
zma-miR166j-3p 753.730476 307.8628345 265.18138 621.25438 424.81753 464.53794 401.185935 436.36882 312.187824
zma-miR166k-3p 754.4802576 307.7447663 264.954 621.94588 425.08725 465.19192 401.008524 436.59609 310.905641
zma-miR166l-3p 8375.410662 2055.626416 5639.1261 6288.8392 2008.7351 7947.1194 3772.82728 2121.6729 14058.0922
zma-miR166m-3p 8341.220619 2033.901867 5603.9959 6260.142 1995.5185 7898.889 3747.63489 2101.9568 13977.4571
zma-miR166n-3p 753.9304178 307.9218686 265.18138 621.312 425.0423 464.59244 401.245072 436.36882 312.235312
zma-miR167a-5p 6383.290867 3235.540984 1168.3329 4172.2755 864.29013 1672.2603 5075.91279 1339.9591 989.085488
zma-miR167b-5p 6383.390837 3235.304848 1168.3897 4172.3331 864.20022 1672.2603 5075.79451 1339.9591 989.085488
zma-miR167c-5p 6383.290867 3235.540984 1168.3329 4172.2755 864.29013 1672.2603 5075.91279 1339.9591 989.085488
zma-miR167d-5p 6383.290867 3235.540984 1168.3329 4172.2755 864.29013 1672.2603 5075.91279 1339.9591 989.085488
zma-miR167e-5p 6383.090925 3235.422916 1168.1055 4172.4484 864.29013 1672.1513 5074.84832 1340.1864 988.943023
zma-miR167f-5p 6383.14091 3235.422916 1168.1055 4172.4484 864.29013 1672.1513 5074.84832 1340.1864 988.943023
zma-miR167g-5p 6382.391129 3234.950643 1167.935 4171.8145 864.15527 1672.1513 5074.43436 1339.9591 988.943023
zma-miR167h-5p 6383.340852 3235.540984 1167.9918 4172.6789 864.20022 1672.5328 5075.02573 1340.5841 988.943023
zma-miR167i-5p 6383.390837 3235.600018 1167.9918 4172.6789 864.20022 1672.5328 5075.02573 1340.5841 988.943023
zma-miR167j-5p 6382.741027 3235.009677 1167.935 4171.8145 864.20022 1672.1513 5074.61177 1339.9591 988.990512
zma-miR168a-5p 5945.968237 5786.1093 7505.1162 13021.563 6575.9505 6315.2964 9509.95174 8001.7996 14166.9828
zma-miR168b-5p 5945.968237 5786.1093 7505.1162 13021.563 6575.9505 6315.2964 9509.95174 8001.7996 14166.9828
zma-miR169a-5p 0.699796184 0.944545609 3.9791418 2.2473723 1.3486271 1.9619153 0.35482247 1.6477468 3.37166649
zma-miR169b-5p 0.699796184 0.944545609 3.9791418 2.2473723 1.3486271 1.9619153 0.35482247 1.6477468 3.37166649
zma-miR169c-5p 0.699796184 0.590341006 2.5580197 2.1897474 0.9889932 0.9809577 0.35482247 1.4772903 2.32692476
NA H16-RPM H17-RPM H18-RPM H19-RPM H20-RPM H21-RPM H22-RPM H23-RPM H24-RPM
zma-miR169f-5p 4.248762548 2.06619352 0.2842244 10.141988 4.6302863 0.1089953 1.30101571 2.7273051 0.2374413
zma-miR169g 4.248762548 2.06619352 0.2842244 10.141988 4.6302863 0.1089953 1.30101571 2.7273051 0.2374413
zma-miR169h 4.248762548 2.06619352 0.2842244 10.141988 4.6302863 0.1089953 1.30101571 2.7273051 0.2374413
zma-miR169i-5p 4.248762548 2.06619352 0.2842244 10.141988 4.6302863 0.1089953 1.30101571 2.7273051 0.2374413
zma-miR169j-5p 4.248762548 2.06619352 0.2842244 10.141988 4.6302863 0.1089953 1.30101571 2.7273051 0.2374413
zma-miR169k-5p 4.248762548 2.06619352 0.2842244 10.141988 4.6302863 0.1089953 1.30101571 2.7273051 0.2374413
zma-miR169p-5p 4.29874799 2.00715942 0.2842244 10.199613 4.6302863 0.1089953 1.36015279 2.7273051 0.2374413
zma-miR169r-5p 0.699796184 0.590341006 2.5580197 2.1897474 0.9889932 0.9809577 0.35482247 1.4772903 2.32692476
zma-miR171b-3p 0.099970883 0.118068201 0.2842244 0.1152499 0.1348627 0.5994741 0.11827416 0 0.56985913
zma-miR171b-5p 0.099970883 0 0.6821386 0.2881247 0 1.2534459 0.17741123 0.1704566 0.56985913
zma-miR171d-3p 11.09676807 4.191421141 52.126757 11.582611 3.0119338 44.797066 8.51573919 2.8977617 30.4399749
zma-miR171d-5p 8.447539654 1.121647911 43.031576 6.8573668 1.0339474 51.990755 6.15025608 1.2500148 102.194736
zma-miR171e-3p 11.09676807 4.191421141 52.126757 11.582611 3.0119338 44.797066 8.51573919 2.8977617 30.4399749
zma-miR171e-5p 8.647481421 1.239716112 44.111629 6.9726166 0.9889932 52.099751 5.97284485 1.2500148 103.049525
zma-miR171f-3p 0.099970883 0.118068201 0.2842244 0.1152499 0.1348627 0.5994741 0.11827416 0 0.56985913
zma-miR171h-3p 0.699796184 0.059034101 0.3979142 0.5186244 0.0899085 0.3269859 0.47309662 0.2272754 0.09497652
zma-miR171h-5p 1.14966516 0.767443307 0.2842244 0.1152499 0.0449542 0.1089953 0.59137078 0.4545509 0.09497652
zma-miR171i-3p 11.09676807 4.13238704 52.013068 11.582611 3.056888 44.524578 8.51573919 2.8977617 30.2500219
zma-miR171j-3p 11.09676807 4.13238704 52.126757 11.582611 3.056888 44.797066 8.51573919 2.8977617 30.4399749
zma-miR171k-3p 0.699796184 0.059034101 0.3979142 0.5186244 0.0899085 0.3269859 0.47309662 0.2272754 0.09497652
zma-miR171k-5p 1.14966516 0.767443307 0.2842244 0.1152499 0.0449542 0.1089953 0.59137078 0.4545509 0.09497652
zma-miR171l-3p 1.549548694 1.121647911 5.4571087 2.1321224 0.6743135 9.7550789 1.83324941 0.2840943 12.7743421
zma-miR171m-3p 1.549548694 1.121647911 5.4571087 2.1321224 0.6743135 9.7550789 1.83324941 0.2840943 12.7743421
zma-miR172a 30.49111946 12.86943393 4.2633662 155.64494 15.913799 6.2672294 24.0096535 24.148014 0.14246478
zma-miR172b-3p 30.5411049 12.86943393 4.2633662 155.64494 15.913799 6.2672294 24.0096535 24.148014 0.14246478
zma-miR172c-3p 30.5411049 12.86943393 4.2633662 155.64494 15.913799 6.2672294 24.0096535 24.148014 0.14246478
zma-miR172d-3p 30.5411049 12.86943393 4.2633662 155.64494 15.913799 6.2672294 24.0096535 24.148014 0.14246478
zma-miR172e 4.348733431 6.375682862 1.8758811 6.684492 16.273433 0.5994741 3.37081343 16.079736 0.37990608
zma-miR319a-3p 29.89129416 9.327387891 1.3074323 28.178591 23.690882 1.1444506 9.69848074 23.523007 0.37990608
zma-miR319b-3p 30.14122137 9.386421992 1.5916567 28.87009 24.185379 1.4169388 9.81675489 23.977557 0.52237086
zma-miR319c-3p 29.84130872 9.327387891 1.3074323 28.178591 23.690882 1.1444506 9.69848074 23.523007 0.37990608
zma-miR319d-3p 30.14122137 9.386421992 1.5916567 28.87009 24.185379 1.4169388 9.81675489 23.977557 0.52237086
zma-miR390a-5p 21.64369627 11.21647911 38.142916 29.33109 14.789943 50.355826 30.455595 15.341091 136.908655
zma-miR390b-5p 21.64369627 11.21647911 38.142916 29.33109 14.789943 50.355826 30.455595 15.341091 136.908655
zma-miR395b-5p 2.049403111 3.483011934 0 0 0 0 2.83857973 1.3636526 0
zma-miR395e-5p 0.899737951 4.07335294 0 0.0576249 0 0 2.36548311 1.3636526 0
zma-miR395h-5p 0.899737951 4.07335294 0 0.0576249 0 0 2.36548311 1.3636526 0
zma-miR395i-5p 2.049403111 3.483011934 0 0 0 0 2.83857973 1.3636526 0
zma-miR395j-5p 0.899737951 4.07335294 0 0.0576249 0 0 2.36548311 1.3636526 0
zma-miR395p-5p 0.899737951 4.07335294 0 0.0576249 0 0 2.36548311 1.3636526 0
zma-miR396a-5p 0.249927209 0.472272805 0.2842244 0.9796238 0.2247712 0.1634929 0.17741123 0.4545509 0.04748826
NA H16-RPM H17-RPM H18-RPM H19-RPM H20-RPM H21-RPM H22-RPM H23-RPM H24-RPM
zma-miR396b-5p 0.249927209 0.472272805 0.2842244 0.9796238 0.2247712 0.1634929 0.17741123 0.4545509 0.04748826
zma-miR396c 0.049985442 0 3.6949174 0.4609994 0 3.5968447 0.05913708 0.1136377 5.69859125
zma-miR396d 0.049985442 0 3.6949174 0.4609994 0 3.5968447 0.05913708 0.1136377 5.69859125
zma-miR396e-5p 0.199941767 0.472272805 0.2842244 0.864374 0.1798169 0.1634929 0.17741123 0.4545509 0.04748826
zma-miR396f-5p 0.199941767 0.472272805 0.2842244 0.864374 0.1798169 0.1634929 0.17741123 0.4545509 0.04748826
zma-miR397a-5p 0.099970883 0.236136402 0.4547591 0.0576249 0 0.4904788 0.29568539 0.1704566 0
zma-miR397b-5p 0.099970883 0.236136402 0.5684488 0.0576249 0 0.4904788 0.29568539 0.2840943 0.04748826
zma-miR398a-3p 0.149956325 0.059034101 4.831815 0.2304997 0.0449542 1.85292 0.05913708 0.0568189 0.52237086
zma-miR398b-3p 0.149956325 0.059034101 4.831815 0.2304997 0.0449542 1.9074177 0.05913708 0.0568189 0.52237086
zma-miR408b-5p 0.549839859 0.531306905 0.966363 1.0372488 0.2247712 1.5804318 1.30101571 0.795464 1.13971825
zma-miR444a 3.249053713 1.889091218 7.1056103 3.6879956 0.5844051 4.0873235 1.77411233 1.2500148 4.7963143
zma-miR444b 3.299039155 2.184261721 7.3329899 3.8608704 0.8990847 4.1418212 1.83324941 1.4772903 5.12873213
zma-miR528a-5p 512.3007924 282.6552736 25.693887 1062.7766 148.75357 220.71547 1562.28332 207.38883 113.876849
zma-miR528b-5p 512.4507487 282.89141 25.750732 1062.8918 148.75357 220.76997 1562.63814 207.55928 113.876849
zma-miR529-5p 45.18683933 5.07693265 0.3410693 27.371842 0.5844051 0.5449765 25.0149839 0.6818263 0.2374413
zma-miR827-3p 15.29554517 138.3759317 22.283194 14.809607 27.107404 31.990119 31.3426512 58.296147 13.9140603
[1] Shull G F. Beginnings of the Heterosis Concept. Ames, IA: Iowa State College Press, 1952. pp 14-48
[2] Jones D F . Dominance of linked factors as a means of accounting for heterosis. Genetics, 1917,2:466-479
[3] Powers L . Relative yields of inbred lines and F1-hybrids of tomato. Bot Gaz, 1945,106:247-268
doi: 10.1086/335297
[4] Mendoza L, Thieffry D , Alvarez-Buylla E R. Genetic control of flower morphogenesis in Arabidopsis thaliana: alogical analysis. Bioinformatics, 1999,15:593-606
[5] Schnable P S, Ware D, Fulton R S, Stein J C, Wei F S, Pasternak S, Liang C, Zhang J, Fulton L, Graves T A, Minx P, Reily A D, Courtney L, Kruchowski S S, Tomlinson C . The B73 maize genome: complexity, diversity, and dynamics. Science, 2009,326:1112-1115
doi: 10.1126/science.1178534
[6] Stupar R M, Springer N M . Cis-transcripioanl variation in maize inbred lines B73 and Mo17 leads to additive expression patterns in the F1 hybrid. Genetics, 2006,173:2199-2210
[7] Hoecker N, Lamkemeyer T, Sarholz B, Paschold A, Fladerer C, Madlung J, Wurster K, Stahl M, Piepho H P, Nordheim A, Hochholdinger F . Analysis of nonadditive protein accumulation in young primary roots of a maize ( Zea mays L.) F1-hybrid compared to its parental inbred lines. Proteomics, 2008,8:3882-3894
[8] Jones-Rhoades M W, Bartel D P, Bartel B . MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol, 2006,57:19-53
doi: 10.1146/annurev.arplant.57.032905.105218
[9] Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamotoet Y, Sieburth L, Voinnet O . Widespread translational inhibition by plant miRNAs and siRNAs. Science, 2008,320:1185-1190
doi: 10.1126/science.1159151 pmid: 18483398
[10] Bowman J L . Class III HD‐Zip gene regulation, the golden fleece of ARGONAUTE activity? Bioessays, 2004,26:938-942
doi: 10.1002/(ISSN)1521-1878
[11] Chuck G, Cigan A M, Saeteurn K, Hake S . The heterochronic maize mutant Corngrass 1 results from overexpression of a tandem microRNA. Nat Genet, 2007,39:544-549
doi: 10.1038/ng2001
[12] Chuck G, Meeley R, Irish E , SakaiH, Hake S. The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nat Genet, 2007,39:1517-1521
doi: 10.1038/ng.2007.20 pmid: 18026103
[13] Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y . Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot, 2009,103:29-38
doi: 10.1093/aob/mcn205
[14] Millar A, Gubler F . The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell Online, 2005,17:705-721
doi: 10.1105/tpc.104.027920 pmid: 15722475
[15] Mica E, Gianfranceschi L, Pè M E . Characterization of five microRNA families in maize. J Exp Bot, 2006,57:2601-2612
doi: 10.1093/jxb/erl013
[16] Ding D, Wang Y J, Han M S, Fu Z Y, Li W H, Liu Z H, Hu Y M, Tang J H . MicroRNA transcriptomic analysis of heterosis during maize seed germination. PLoS One, 2012,7:e39578
doi: 10.1371/journal.pone.0039578
[17] Elaine R M . Next-generation DNA sequencing methods. Annu Rev Genomics Human Genet, 2008,9:387-402
doi: 10.1146/annurev.genom.9.081307.164359
[18] Yang J, Liu X, Xu B, Zhao N, Yang X, Zhang M . Identification of miRNAs and their targets using high-throughput sequencing and degradome analysis in cytoplasmic male-sterile and its maintainer fertile lines of Brassica juncea. BMC Genomics, 2013,14:9
[19] Yang X, Wang L, Yuan D, Lindsey K, Zhang X . Small RNA and degradome sequencing reveal complex miRNA regulation during cotton somatic embryogenesis. J Exp Bot, 2013,64:1521-1536
doi: 10.1093/jxb/ert013 pmid: 3617824
[20] Shen Y, Jiang Z, Lu S, Lin H, Gao S, Peng H, Yuan G, Liu L, Zhang Z, Zhao M, Rong T, Pan G . Combined small RNA and degradome sequencing reveals microRNA regulation during immature maize embryo dedifferentiation. Biochem Biophys Res Commun, 2013,441:425-430
doi: 10.1016/j.bbrc.2013.10.113 pmid: 24183719
[21] Zhang L, Chia J M, Kumari S, Stein J C, Liu Z, Narechania A, Maher C A, Guill K , McMullen M D, Ware D. A genome-wide characterization of microRNA genes in maize. PLoS Genet, 2009,5:e1000716
doi: 10.1371/journal.pgen.1000716 pmid: 2773440
[22] Bennetzen J L, Hake S C . Handbook of Maize: Its Biology. New York: Springer, 2009
[23] Kellogg E A . THE GRASSES: a case study in Macroevolution. Annu Rev Ecol Syst, 2000,31:217-238
doi: 10.1146/annurev.ecolsys.31.1.217
[24] Ding D, Li W, Han M, Wang Y, Fu Z, Wang B, Tang J . Identification and characterization of maize microRNAs involved in developing ears. Plant Biol, 2014,16:9-15
doi: 10.1111/plb.12013
[25] Zhang B H, Pan X P, Cannon C H, Cobb G P, Anderson T A . Conservation and divergence of plant microRNA genes. Plant J, 2006,46:243-259
doi: 10.1111/j.1365-313X.2006.02697.x pmid: 16623887
[26] Addo-Quaye C, Miller W, Axtell M J . CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics, 2009,25:130-131
doi: 10.1093/bioinformatics/btn604
[27] Chen C, Ridzon D A, Broomer A J, Zhou Z, Lee D H, Nguyen J T, Barbisin M, Xu N L, Mahuvakar V R, Andersen M R, Lao K Q, Livak K J, Guegler K J . Real-time quntitiention of microRNAs by stem loop RT-PCR. Nuc Acids Res, 2005,33:e179
doi: 10.1093/nar/gni178
[28] Reinhar B J, Weinstein E G, Rhoades M W, Barte B, Barte D P . MicroRNAs in plants. Genes Dev, 2002,16:1616-1626
doi: 10.1101/gad.1004402
[29] Osborn T C, Pires J C, Birchler J A, Auger D L, Chen Z J, Lee H S, Comai L, Madlung A, Doerge R W, Colot V, Martienssen R A . Understanding mechanisms of novel gene expression in polyploids. Trends Genet, 2003,19:141-147
doi: 10.1016/S0168-9525(03)00015-5
[30] Song R, Messing J . Gene expression of a gene family in maize based on non-collinear haplotypes. Proc Natl Acad Sci USA, 2003,100:9055-9060
doi: 10.1073/pnas.1032999100
[31] He G, Zhu X, Elling A A, Chen L, Wang X, Guo L, Liang M, He H, Zhang H, Chen F, Qi Y, Chen R, Deng X W . Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell, 2010,22:17-33
doi: 10.1105/tpc.109.072041 pmid: 20086188
[32] Yao Y, Guo G, Ni Z, Sunkar R, Du J, Zhu J, Sun Q . Cloning and characterization of microRNAs from wheat ( Triticum aestivum L.). Genome Biol, 2007,8:R96
[33] Wang J W, Schwab R, Czech B, Mica E, Weigel D . Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. Plant Cell, 2008,20:1231-1243
[34] Gutierrez L, Bussell J D, Pacurar D I, Schwambach J, Pacurar M, Bellini C . Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. Plant Cell, 2009,21:3119-3132
[35] Baker C C, Sieber P, Wellmer F, Meyerowitz E M . The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Curr Biol, 2005,15:303-315
[36] Rodriguez R E, Mecchia M A, Debernardi J M, Schommer C, Weigel D, Palatnik J F . Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development, 2010,137:103-112
doi: 10.1007/BF00708348
[37] Vaucheret H, Mallory A C, Bartel D P . AGO1 homeostasis entails coexpression of MIR168 and AGO1 and preferential stabilization of miR168 by AGO1. Mol Cell, 2006,22:129-136
doi: 10.1016/j.molcel.2006.03.011 pmid: 16600876
[38] Williams L, Grigg S P, Xie M, Christensen S, Fletcher J C . Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Development, 2005,132:3657-3668
[39] Juarez M T, Kui J S, Thomas J, Heller B A , Timmermans M C. microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature, 2004,428:84-88
doi: 10.1038/nature02363 pmid: 14999285
[40] Agalou A, Purwantomo S, Overnäs E, Johannesson H, Zhu X , Estiati A, de Kam R J, Engström P, Slamet-Loedin I H, Zhu Z, Wang M, Xiong L, Meijer A H, Ouwerkerk P B. A genome-wide survey of HD-Zip genes in rice and analysis of drought- responsive family members. Plant Mol Biol, 2008,66:87-103
doi: 10.1007/s11103-007-9255-7 pmid: 17999151
[41] Dai M, Hu Y, Ma Q, Zhao Y, Zhou D X . Functional analysis of rice HOMEOBOX4 (Oshox4) gene reveals a negative function in gibberellin responses. Plant Mol Biol, 2008,66:289-301
doi: 10.1007/s11103-007-9270-8 pmid: 18049796
[42] Tsuji H, Aya K, Ueguchi-Tanaka M, Shimada Y, Nakazono M . GAMYB controls different sets of genes and is differentially regulated by microRNA in aleurone cells and anthers. Plant J, 2006,47:427-444
doi: 10.1111/j.1365-313X.2006.02795.x pmid: 16792694
[43] Baron K N, Schroeder D F, Stasolla C . Transcriptional response of abscisic acid (ABA) metabolism and transport to cold and heat stress applied at the reproductive stage of development in Arabidopsis thaliana. Plant Sci, 2012,188:48-59
[44] Phillips J R, Dalmay T, Bartels D . The role of small RNAs in abiotic stress. FEBS Lett, 2007,581:3592-3597
doi: 10.1016/j.febslet.2007.04.007
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!