作物学报 ›› 2018, Vol. 44 ›› Issue (6): 796-813.doi: 10.3724/SP.J.1006.2018.00796
王琪月1,孟淑君1,张柯2,张战辉1,汤继华1,丁冬1,*()
Qi-Yue WANG1,Shu-Jun MENG1,Ke ZHANG2,Zhan-Hui ZHANG1,Ji-Hua TANG1,Dong DING1,*()
摘要:
杂种优势已广泛应用于玉米育种, 在提高玉米产量、品质以及增强抗逆性等方面起到了重要的作用, 然而杂种优势的分子机制尚不清楚。植物miRNA主要在转录和转录后水平调节基因的表达。为阐明miRNA是否及如何对玉米雌穗发育杂种优势产生影响, 本研究对玉米杂交种郑单958及其亲本自交系(昌7-2和郑58)进行了高通量miRNA测序和降解组测序。取玉米雌穗花序分生组织(IM)发育为成对小穗分生组织(SPM), 进而产生小穗分生组织(SM), 及小花分生组织(FM)将3个不同时期的雌穗样品用于miRNA建库测序, 鉴定出16个miRNA家族中的81个保守miRNA为非加性表达, 认为是与雌穗发育杂种优势形成相关的miRNA; 3个阶段中分别检测到80.30%、56.06%和48.10%的非加性表达的miRNA被显性或超显性抑制。鉴定出8种新的miRNA, 属于7个miRNA家族。通过雌穗降解组测序, 发现在郑单958及其亲本自交系中共同检测到的miRNA靶向42个基因的82个转录本。根据测序结果构建了miRNA参与玉米雌穗杂种优势的模型, 并推测在雌穗发育早期阶段杂交种雌穗的miRNA的普遍抑制导致其靶基因上调表达, 随着发育进程miRNA逐步解除抑制, 带来其靶基因表达量的逐步减少, 这种miRNA与其靶基因的拮抗关系也许与玉米雌穗发育杂种优势形成有关。
[1] | Shull G F. Beginnings of the Heterosis Concept. Ames, IA: Iowa State College Press, 1952. pp 14-48 |
[2] | Jones D F . Dominance of linked factors as a means of accounting for heterosis. Genetics, 1917,2:466-479 |
[3] |
Powers L . Relative yields of inbred lines and F1-hybrids of tomato. Bot Gaz, 1945,106:247-268
doi: 10.1086/335297 |
[4] | Mendoza L, Thieffry D , Alvarez-Buylla E R. Genetic control of flower morphogenesis in Arabidopsis thaliana: alogical analysis. Bioinformatics, 1999,15:593-606 |
[5] |
Schnable P S, Ware D, Fulton R S, Stein J C, Wei F S, Pasternak S, Liang C, Zhang J, Fulton L, Graves T A, Minx P, Reily A D, Courtney L, Kruchowski S S, Tomlinson C . The B73 maize genome: complexity, diversity, and dynamics. Science, 2009,326:1112-1115
doi: 10.1126/science.1178534 |
[6] | Stupar R M, Springer N M . Cis-transcripioanl variation in maize inbred lines B73 and Mo17 leads to additive expression patterns in the F1 hybrid. Genetics, 2006,173:2199-2210 |
[7] | Hoecker N, Lamkemeyer T, Sarholz B, Paschold A, Fladerer C, Madlung J, Wurster K, Stahl M, Piepho H P, Nordheim A, Hochholdinger F . Analysis of nonadditive protein accumulation in young primary roots of a maize ( Zea mays L.) F1-hybrid compared to its parental inbred lines. Proteomics, 2008,8:3882-3894 |
[8] |
Jones-Rhoades M W, Bartel D P, Bartel B . MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol, 2006,57:19-53
doi: 10.1146/annurev.arplant.57.032905.105218 |
[9] |
Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamotoet Y, Sieburth L, Voinnet O . Widespread translational inhibition by plant miRNAs and siRNAs. Science, 2008,320:1185-1190
doi: 10.1126/science.1159151 pmid: 18483398 |
[10] |
Bowman J L . Class III HD‐Zip gene regulation, the golden fleece of ARGONAUTE activity? Bioessays, 2004,26:938-942
doi: 10.1002/(ISSN)1521-1878 |
[11] |
Chuck G, Cigan A M, Saeteurn K, Hake S . The heterochronic maize mutant Corngrass 1 results from overexpression of a tandem microRNA. Nat Genet, 2007,39:544-549
doi: 10.1038/ng2001 |
[12] |
Chuck G, Meeley R, Irish E , SakaiH, Hake S. The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nat Genet, 2007,39:1517-1521
doi: 10.1038/ng.2007.20 pmid: 18026103 |
[13] |
Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y . Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot, 2009,103:29-38
doi: 10.1093/aob/mcn205 |
[14] |
Millar A, Gubler F . The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell Online, 2005,17:705-721
doi: 10.1105/tpc.104.027920 pmid: 15722475 |
[15] |
Mica E, Gianfranceschi L, Pè M E . Characterization of five microRNA families in maize. J Exp Bot, 2006,57:2601-2612
doi: 10.1093/jxb/erl013 |
[16] |
Ding D, Wang Y J, Han M S, Fu Z Y, Li W H, Liu Z H, Hu Y M, Tang J H . MicroRNA transcriptomic analysis of heterosis during maize seed germination. PLoS One, 2012,7:e39578
doi: 10.1371/journal.pone.0039578 |
[17] |
Elaine R M . Next-generation DNA sequencing methods. Annu Rev Genomics Human Genet, 2008,9:387-402
doi: 10.1146/annurev.genom.9.081307.164359 |
[18] | Yang J, Liu X, Xu B, Zhao N, Yang X, Zhang M . Identification of miRNAs and their targets using high-throughput sequencing and degradome analysis in cytoplasmic male-sterile and its maintainer fertile lines of Brassica juncea. BMC Genomics, 2013,14:9 |
[19] |
Yang X, Wang L, Yuan D, Lindsey K, Zhang X . Small RNA and degradome sequencing reveal complex miRNA regulation during cotton somatic embryogenesis. J Exp Bot, 2013,64:1521-1536
doi: 10.1093/jxb/ert013 pmid: 3617824 |
[20] |
Shen Y, Jiang Z, Lu S, Lin H, Gao S, Peng H, Yuan G, Liu L, Zhang Z, Zhao M, Rong T, Pan G . Combined small RNA and degradome sequencing reveals microRNA regulation during immature maize embryo dedifferentiation. Biochem Biophys Res Commun, 2013,441:425-430
doi: 10.1016/j.bbrc.2013.10.113 pmid: 24183719 |
[21] |
Zhang L, Chia J M, Kumari S, Stein J C, Liu Z, Narechania A, Maher C A, Guill K , McMullen M D, Ware D. A genome-wide characterization of microRNA genes in maize. PLoS Genet, 2009,5:e1000716
doi: 10.1371/journal.pgen.1000716 pmid: 2773440 |
[22] | Bennetzen J L, Hake S C . Handbook of Maize: Its Biology. New York: Springer, 2009 |
[23] |
Kellogg E A . THE GRASSES: a case study in Macroevolution. Annu Rev Ecol Syst, 2000,31:217-238
doi: 10.1146/annurev.ecolsys.31.1.217 |
[24] |
Ding D, Li W, Han M, Wang Y, Fu Z, Wang B, Tang J . Identification and characterization of maize microRNAs involved in developing ears. Plant Biol, 2014,16:9-15
doi: 10.1111/plb.12013 |
[25] |
Zhang B H, Pan X P, Cannon C H, Cobb G P, Anderson T A . Conservation and divergence of plant microRNA genes. Plant J, 2006,46:243-259
doi: 10.1111/j.1365-313X.2006.02697.x pmid: 16623887 |
[26] |
Addo-Quaye C, Miller W, Axtell M J . CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics, 2009,25:130-131
doi: 10.1093/bioinformatics/btn604 |
[27] |
Chen C, Ridzon D A, Broomer A J, Zhou Z, Lee D H, Nguyen J T, Barbisin M, Xu N L, Mahuvakar V R, Andersen M R, Lao K Q, Livak K J, Guegler K J . Real-time quntitiention of microRNAs by stem loop RT-PCR. Nuc Acids Res, 2005,33:e179
doi: 10.1093/nar/gni178 |
[28] |
Reinhar B J, Weinstein E G, Rhoades M W, Barte B, Barte D P . MicroRNAs in plants. Genes Dev, 2002,16:1616-1626
doi: 10.1101/gad.1004402 |
[29] |
Osborn T C, Pires J C, Birchler J A, Auger D L, Chen Z J, Lee H S, Comai L, Madlung A, Doerge R W, Colot V, Martienssen R A . Understanding mechanisms of novel gene expression in polyploids. Trends Genet, 2003,19:141-147
doi: 10.1016/S0168-9525(03)00015-5 |
[30] |
Song R, Messing J . Gene expression of a gene family in maize based on non-collinear haplotypes. Proc Natl Acad Sci USA, 2003,100:9055-9060
doi: 10.1073/pnas.1032999100 |
[31] |
He G, Zhu X, Elling A A, Chen L, Wang X, Guo L, Liang M, He H, Zhang H, Chen F, Qi Y, Chen R, Deng X W . Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell, 2010,22:17-33
doi: 10.1105/tpc.109.072041 pmid: 20086188 |
[32] | Yao Y, Guo G, Ni Z, Sunkar R, Du J, Zhu J, Sun Q . Cloning and characterization of microRNAs from wheat ( Triticum aestivum L.). Genome Biol, 2007,8:R96 |
[33] | Wang J W, Schwab R, Czech B, Mica E, Weigel D . Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. Plant Cell, 2008,20:1231-1243 |
[34] | Gutierrez L, Bussell J D, Pacurar D I, Schwambach J, Pacurar M, Bellini C . Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. Plant Cell, 2009,21:3119-3132 |
[35] | Baker C C, Sieber P, Wellmer F, Meyerowitz E M . The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Curr Biol, 2005,15:303-315 |
[36] |
Rodriguez R E, Mecchia M A, Debernardi J M, Schommer C, Weigel D, Palatnik J F . Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development, 2010,137:103-112
doi: 10.1007/BF00708348 |
[37] |
Vaucheret H, Mallory A C, Bartel D P . AGO1 homeostasis entails coexpression of MIR168 and AGO1 and preferential stabilization of miR168 by AGO1. Mol Cell, 2006,22:129-136
doi: 10.1016/j.molcel.2006.03.011 pmid: 16600876 |
[38] | Williams L, Grigg S P, Xie M, Christensen S, Fletcher J C . Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Development, 2005,132:3657-3668 |
[39] |
Juarez M T, Kui J S, Thomas J, Heller B A , Timmermans M C. microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature, 2004,428:84-88
doi: 10.1038/nature02363 pmid: 14999285 |
[40] |
Agalou A, Purwantomo S, Overnäs E, Johannesson H, Zhu X , Estiati A, de Kam R J, Engström P, Slamet-Loedin I H, Zhu Z, Wang M, Xiong L, Meijer A H, Ouwerkerk P B. A genome-wide survey of HD-Zip genes in rice and analysis of drought- responsive family members. Plant Mol Biol, 2008,66:87-103
doi: 10.1007/s11103-007-9255-7 pmid: 17999151 |
[41] |
Dai M, Hu Y, Ma Q, Zhao Y, Zhou D X . Functional analysis of rice HOMEOBOX4 (Oshox4) gene reveals a negative function in gibberellin responses. Plant Mol Biol, 2008,66:289-301
doi: 10.1007/s11103-007-9270-8 pmid: 18049796 |
[42] |
Tsuji H, Aya K, Ueguchi-Tanaka M, Shimada Y, Nakazono M . GAMYB controls different sets of genes and is differentially regulated by microRNA in aleurone cells and anthers. Plant J, 2006,47:427-444
doi: 10.1111/j.1365-313X.2006.02795.x pmid: 16792694 |
[43] | Baron K N, Schroeder D F, Stasolla C . Transcriptional response of abscisic acid (ABA) metabolism and transport to cold and heat stress applied at the reproductive stage of development in Arabidopsis thaliana. Plant Sci, 2012,188:48-59 |
[44] |
Phillips J R, Dalmay T, Bartels D . The role of small RNAs in abiotic stress. FEBS Lett, 2007,581:3592-3597
doi: 10.1016/j.febslet.2007.04.007 |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[3] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[4] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[5] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[6] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[7] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[8] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[9] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[10] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[11] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
[12] | 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738. |
[13] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[14] | 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192. |
[15] | 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214. |
|