欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (8): 1248-1255.doi: 10.3724/SP.J.1006.2018.01248

• 研究简报 • 上一篇    下一篇

不同环境基于高密度遗传图谱的稻米外观品质QTL定位

彭强(),李佳丽(),张大双,姜雪,邓茹月,吴健强,朱速松()   

  1. 贵州省农业科学院水稻研究所, 贵州贵阳 550006
  • 收稿日期:2018-03-14 接受日期:2018-06-12 出版日期:2018-08-10 网络出版日期:2018-06-19
  • 通讯作者: 彭强,李佳丽,朱速松
  • 基金资助:
    贵州省科技支撑计划项目(黔科合支撑[2018]2298号);贵州省科研机构服务企业行动计划项目(黔科合服企[2014]4005号);贵州省科技计划项目(黔科合平台人才[2017]5719号);贵州省现代产业体系项目(GZCYTX2017-0602);贵州省农业科学院青年基金项目(黔农科院青年基金[2018]18号)资助

QTL Mapping for Rice Appearance Quality Traits Based on a High-density Genetic Map in Different Environments

Qiang PENG(),Jia-Li LI(),Da-Shuang ZHANG,Xue JIANG,Ru-Yue DENG,Jian-Qiang WU,Su-Song ZHU()   

  1. Guizhou Rice Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China
  • Received:2018-03-14 Accepted:2018-06-12 Published:2018-08-10 Published online:2018-06-19
  • Contact: Qiang PENG,Jia-Li LI,Su-Song ZHU
  • Supported by:
    the Science and Technology Support Project of Guizhou Province (QKHZC20182298);the Research Institution Service Enterprise Action Plan Project of Guizhou Province (QKHFQ20144005);the Science and Technology Plan Project of Guizhou Province (QKHPTRC20175719);the Modern Industry System Project of Guizhou Province(GZCYTX2017-0602);the Youth Fund Project of Guizhou Academy of Agricultural Sciences (QNKYQN201818).

摘要:

为解析稻米外观品质遗传基础, 挖掘稳定存在的控制稻米外观品质性状的QTL, 本研究以籼稻品种V20B和爪哇稻品种CPSLO17作为亲本, 构建包含150个重组自交家系(recombinantion inbred line, RIL)的RIL作图群体, 进行外观品质性状QTL定位分析。利用特定位点扩增长度测序(SLAF-seq)技术, 构建了一个由12个连锁群包含8602个标记, 平均间距为0.29 cM的高密度遗传图谱。采用IciMapping 4.0软件的ICIM-ADD方法在3种环境(贵阳、贵定、三亚)对4个外观品质性状(粒长、粒宽、垩白度和垩白粒率)进行QTL (quantitative trait locus)定位分析。结果表明: 3种环境共检测到9个粒长QTL、6个粒宽QTL、3个垩白度QTL和4个垩白粒率QTL; 有5个QTL在多个环境被重复检测到, 其中3种环境都定位到的粒宽QTL qGW5-1和垩白度QTL qCha5-1为同一定位区间(第5染色体的Marker1642127-Marker1514505); 此外, 垩白度QTL qCha5-2的定位区间(Marker1554573-Marker1554589)和垩白粒率QTL qCGP5-2也是一样的。序列比对发现QTL qCha5-1定位区间仅51.5 kb, 是新的垩白性状主效QTL。本研究结果不仅为挖掘新的外观品质性状基因奠定基础, 也有助于开发新的分子标记进行水稻外观品质性状遗传改良。

关键词: 水稻, 外观品质, QTL, 高密度遗传图谱, 高通量测序

Abstract:

To analyze the genetic basis of appearance quality of rice, explore QTL which controlled rice appearance quality related traits stably existing, a mapping population of 150 lines (recombination inbred lines, RIL), derived from a cross between rice varieties V20B and CPSLO17, was applied to analysis QTL location of appearance quality trait. The specific locus amplified fragment sequencing (SLAF-seq) technology was employed to construct a high-density genetic map in rice (Oryza sativa L.). A genetic map included 8602 markers on the 12 linkage groups was successfully constructed, which with an average distance of 0.29 cM between adjacent markers. The ICIM-ADD method of IciMapping 4.0 software was used to analyze QTL location for four appearance quality traits, including grain length (GL), grain width (GW), chalky grain rate, and chalkiness degree in three environmental conditions (Guiyang, Guiding, and Sanya). A total of nine QTLs for grain length (GL), six QTLs for grain width (GW), four QTLs for chalkiness size, three QTLs for chalkiness degree traits were detested in three environments. Five QTLs were repeatedly detected in multiple environments, of which the QTL qGW5-1 and qCha5-1 with the same localization interval (Marker1642127-Marker1514505 on chromosome 5) were repeatedly located in all three environments. In addition, the positioning interval of chalkiness QTL qCha5-2 (Marker1554573-Marker1554589) is the same as the chalkiness size QTL qCGP5-2. The sequence alignment found that the location interval of QTL qCha5-1 was only 51.5 kb, which was a new main effect QTL for chalkiness trait. These results lay the foundation for further exploiting candidate gene of appearance quality, which also contribute to the development of new molecular markers for rice appearance quality traits genetic improvement.

Key words: rice, appearance quality, QTL, high-density genetic map, high throughput sequencing

图1

3种环境下RIL群体中稻米外观品质性状分布 GL: 粒长; GW: 粒宽; CGP: 垩白粒率。"

表1

RIL群体在3个环境下的外观品质性状表现"

性状
Trait
环境
Environment
亲本 Parents 均值
Mean
幅度
Variance
标准误
SE
偏度
Skewness
峰度
Kurtosis
W-test P-value
V20B CPSLO17
粒长
Grian length
(mm)
贵州贵阳 Guiyang, Guizhou 6.9317 7.5079 7.1104 0.3837 0.6194 0.2445 -0.4229 0.9770 0
贵州贵定 Guiding, Guizhou 6.8986 7.4041 7.0370 0.3853 0.6207 -0.0375 0.2419 0.9885 0
海南三亚 Sanya, Hainan 6.8264 7.6673 7.0589 0.3469 0.589 0.1212 -0.6511 0.9725 0
粒宽
Grain width
(mm)
贵州贵阳 Guiyang, Guizhou 2.7864 1.9939 2.4299 0.0383 0.1956 -0.005 0.1085 0.9844 0
贵州贵定 Guiding, Guizhou 2.8194 2.1133 2.4330 0.0305 0.1746 -0.4667 -0.2171 0.9588 0
海南三亚 Sanya, Hainan 2.9044 2.1920 2.5347 0.0341 0.1846 -0.3713 -0.3784 0.9602 0
垩白度
Chalkiness
(%)
贵州贵阳 Guiyang, Guizhou 23.0488 0 9.0864 81.8183 9.0453 1.0115 0.5006 0.8656 0.2495
贵州贵定 Guiding, Guizhou 23.4848 0 6.0706 54.2400 7.3648 1.5925 2.0456 0.7781 0.8978
海南三亚 Sanya, Hainan 23.4286 0 8.9570 74.5756 8.6357 1.0951 0.8017 0.8732 0.0977
垩白粒率
Chalky grain
percentage (%)
贵州贵阳 Guiyang, Guizhou 26.2500 0 14.5078 90.7359 9.5255 0.6304 1.1792 0.9337 0.6898
贵州贵定 Guiding, Guizhou 25.0000 0 10.6941 78.7201 8.8724 0.7583 -0.0918 0.8983 0.0019
海南三亚 Sanya, Hainan 25.6250 0 11.9539 71.8795 8.4782 0.7945 0.7856 0.9134 0.0030

表2

亲本的SLAF数量及其覆盖深度"

样品
Sample
SLAF数量
SLAF number
读取数
Reads number
平均深度
Average depth (×)
V20B 58473 2889072 49.41
CPSLO17 51837 2760145 53.25
合计 Total 110310 193277 51.21

表3

12连锁群基本信息统计"

染色体
Chr.
长度
Length (cM)
标记数量
Marker number
标记间距 Marker interval (cM) Spearman相关系数?
Spearman correlation coefficient ?
平均值 Mean 最大值 Max
1 365.11 1334 0.27 2.45 0.9996
2 184.38 818 0.23 6.00 0.9999
3 262.99 438 0.60 10.50 0.9995
4 241.09 908 0.27 3.67 0.9956
5 105.26 504 0.21 3.36 0.9996
6 363.05 1028 0.35 2.91 0.9900
7 149.03 817 0.18 3.09 0.9831
8 157.91 386 0.41 3.58 0.9996
9 130.07 525 0.25 7.04 0.9632
10 103.98 415 0.25 4.92 0.9791
11 245.23 782 0.31 2.82 0.9913
12 200.54 647 0.31 4.83 0.9978
合计 Total 2508.65 8602 0.29 10.50

图2

稻米外观品质性状的QTL在遗传图谱上的分布"

表4

不同环境下稻米外观品质性状QTL分析"

性状
Trait
环境Environments 基因座
QTL
染色体
Chr.
位置
Position (cM)
标记区间
Marker interval
LOD 表型贡献率PVE (%) 加性效应
Add.
粒长
Grain length
贵州贵阳Guiyang, Guizhou qGL1-2 1 361 Marker693317-Marker532394 4.13 5.87 -0.1498
qGL3-1 3 60 Marker910209-Marker823024 5.25 7.28 0.1693
qGL3-3 3 127 Marker891931-Marker771788 4.03 5.42 0.1466
qGL7-1 7 118 Marker275670-Marker347375 4.85 6.95 -0.1628
qGL8-1 8 115 Marker201080-Marker118092 17.97 31.18 0.3496
qGL8-2 8 119 Marker191958-Marker143502 7.88 11.87 -0.2175
qGL10-1 10 19 Marker34448-Marker23092 9.60 15.71 0.2592
贵州贵定Guiding,Guizhou qGL1-1 1 266 Marker587391-Marker688101 3.91 10.15 -0.1972
qGL3-2 3 63 Marker922818-Marker757283 5.08 13.38 0.2283
海南三亚
Sanya, Hainan
qGL1-2 1 361 Marker693317-Marker532394 3.05 8.10 -0.1673
qGL3-1 3 60 Marker910209-Marker823024 3.79 10.22 0.1908
粒宽
Grain width
贵州贵阳Guiyang, Guizhou qGW5-1 5 27 Marker1642127-Marker1514505 14.34 28.66 0.1051
qGW7-2 7 114 Marker343862-Marker239518 6.18 10.49 0.0632
qGW11-2 11 120 Marker1741595-Marker1645826 4.45 7.81 0.0545
贵州贵定Guiding, Guizhou qGW5-1 5 27 Marker1642127-Marker1514505 8.46 16.96 0.0721
qGW7-1 7 106 Marker322410-Marker237275 6.83 13.24 0.0638
海南三亚
Sanya, Hainan
qGW5-1 5 27 Marker1642127-Marker1514505 5.84 12.59 0.0657
qGW11-1 11 114 Marker1750082-Marker1683589 4.34 8.93 0.0550
qGW12-1 12 71 Marker1486720-Marker1380718 4.09 8.88 -0.0567
垩白度Chalkiness 贵州贵阳Guiyang, Guizhou qCha5-1 5 27 Marker1642127-Marker1514505 4.69 12.63 0.0322
贵州贵定Guiding, Guizhou qCha5-1 5 27 Marker1642127-Marker1514505 5.05 14.77 0.0284
海南三亚
Sanya, Hainan
qCha4-1 4 147 Marker403659-Marker472670 3.98 7.71 0.0241
qCha5-1 5 27 Marker1642127-Marker1514505 8.55 17.83 0.0366
qCha5-2 5 102 Marker1554573-Marker1554589 3.75 7.46 0.0241
垩白粒率Chalky grain percentage 贵州贵阳Guiyang, Guizhou qCGP2-1 2 1 Marker1152260-Marker1135261 3.91 9.95 2.9960
qCGP5-2 5 102 Marker1554573-Marker1554589 3.42 9.15 2.9475
海南三亚
Sanya, Hainan
qCGP4-1 4 149 Marker472670-Marker400717 5.01 10.66 2.7694
qCGP5-1 5 25 Marker1611496-Marker1557594 5.82 12.50 3.0122
qCGP5-2 5 102 Marker1554573-Marker1554589 5.28 11.15 2.8968
[1] 张昌泉, 赵冬生, 李钱峰, 顾铭洪, 刘巧泉 . 稻米品质性状基因的克隆与功能研究进展. 中国农业科学, 2016,49:4267-4283
doi: 10.3864/j.issn.0578-1752.2016.22.002
Zhang C Q, Zhao D S, Li Q F, Gu M H, Liu Q Q . Progresses in research on cloning and functional analysis of key genes involving in rice grain quality. Sci Agric Sin, 2016,49:4267-4283 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2016.22.002
[2] 李一博, 赵雷 . 水稻品质性状的遗传改良及其关键科学问题. 生命科学, 2016,28:1168-1179
Li Y B, Zhao L . Genetic improvement and key scientific questions of grain quality traits in rice. Chin Bull Life Sci, 2016,28:1168-1179 (in Chinese with English abstract)
[3] 江良荣, 李义珍, 王侯聪, 黄育民 . 稻米外观品质的研究进展与分子改良策略. 分子植物育种, 2003,1:243-255
Jiang L R, Li Y Z, Wang H C, Huang Y M . Research progresses on appearance quality of rice grain and strategies for its molecular improvement. Mol Plant Breed, 2003,1:243-255 (in Chinese with English abstract)
[4] 王忠华, 方振华, 干建彗 . 稻米外观品质性状遗传与分子定位研究进展. 生命科学, 2009,21:444-351
Wang Z H, Fang Z H, Gan J H . Advances in genetic research and molecular mapping of the rice grain appearance quality. Chin Bull Life Sci, 2009,21:444-351 (in Chinese with English abstract)
[5] Qiu X, Chen K, Lv W, Ou X, Zhu Y, Xing D, Yang L, Fan F, Yang J, Xu J, Zheng T, Li Z . Examining two sets of introgression lines reveals background-independent and stably expressed QTL that improve grain appearance quality in rice (Oryza sativa L.). Theor Appl Genet, 2017,130:951-967
[6] Wan X Y, Wan J M, Weng J F, Jiang L, Bi J C, Wang C M, Zhai H Q . Stability of QTLs for rice grain dimension and endosperm chalkiness characteristics across eight environments. Theor Appl Genet, 2005,110:1334-1346
doi: 10.1007/s00122-005-1976-x
[7] 杨亚春, 倪大虎, 宋丰顺, 李泽福, 易成新, 杨剑波 . 不同生态地点下稻米外观品质性状的QTL定位分析. 中国水稻科学, 2011,25:43-51
doi: 10.3969/j.issn.1001-7216.2011.01.007
Yang Y C, Ni D H, Song F S, Li Z F, Yi C X, Yang J B . Identification of QTLs for rice appearance quality traits across different ecological sites. Chin J Rice Sci, 2011,25:43-51 (in Chinese with English abstract)
doi: 10.3969/j.issn.1001-7216.2011.01.007
[8] Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F . GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006,112:1164-1171
[9] Mao H, Sun S, Yao J, Wang C, Yu S, Xu C, Li X, Zhang Q . Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci USA, 2010,107:19579-19584
doi: 10.1073/pnas.1014419107
[10] Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M . Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet, 2008,40:1023-1028
doi: 10.1038/ng.169 pmid: 18604208
[11] Weng J F, Gu S H, Wan X Y, Gao H, Guo T, Su N, Lei C L, Zhang X, Cheng Z J, Guo X P, Wang J L, Jiang L, Zhai H Q, Wan J M . Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res, 2008,18:1199-1209
[12] Che R, Tong H, Shi B, Liu Y, Fang S, Liu D, Xiao Y, Hu B, Liu L, Wang H, Zhao M, Chu C . Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat Plants, 2015,2:15195
[13] Hu J, Wang Y, Fang Y, Zeng L, Xu J, Yu H, Shi Z, Pan J, Zhang D, Kang S, Zhu L, Dong G, Guo L, Zeng D, Zhang G, Xie L, Xiong G, Li J, Qian Q . A rare allele of GS2 enhances grain size and grain yield in rice. Mol Plant, 2015,8:1455-1465
doi: 10.1016/j.molp.2015.07.002 pmid: 26187814
[14] Song X J, Huang W, Shi M, Zhu M Z, Lin H X . A QTL for rice grain width and weight encodes a previously unknown RING type E3 ubiquitin ligase. Nat Genet, 2007,39:623-630
doi: 10.1038/ng2014
[15] Wang S K, Li S, Liu Q, Wu K, Zhang J Q, Wang S S, Wang Y, Chen X B, Zhang Y, Gao C X, Wang F, Huang H X, Fu X D . The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet, 2015,47:949-954
[16] Wang Y X, Xiong G S, Hu J, Jiang L, Yu H, Xu J, Fang Y X, Zeng L J, Xu E B, Xu J, Ye W J, Meng X B, Liu R F, Chen H Q, Jing Y H, Wang Y H, Zhu X D, Li J Y, Qian Q . Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet, 2015,47:944-948
doi: 10.1038/ng.3346 pmid: 26147619
[17] Wang S K, Wu K, Yuan Q B, Liu X Y, Liu Z B, Lin X Y, Zeng R Z, Zhu H T, Dong G J, Qian Q, Zhang G Q, Fu X D . Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet, 2012,44:950-954
doi: 10.1038/ng.2327 pmid: 22729225
[18] Peng B, Wang L, Fan C, Jiang G, Luo L, Li Y, He Y . Comparative mapping of chalkiness components in rice using five populations across two environments. BMC Genet, 2014,15:49
[19] Zhao X, Daygon V D, McNally K L, Hamilton R S, Xie F, Reinke R F, Fitzgerald M A . Identification of stable QTLs causing chalk in rice grains in nine environments. Theor Appl Genet, 2016,129:141-153
doi: 10.1007/s00122-015-2616-8 pmid: 26498441
[20] 邱先进, 袁志华, 陈凯, 杜斌, 何文静, 杨隆维, 徐建龙, 邢丹英, 吕文恺 . 用全基因组关联分析解析籼稻垩白的遗传基础. 作物学报, 2015,41:1007-1016
doi: 10.3724/SP.J.1006.2015.01007
Qiu X J, Yuan Z H, Chen K, Du B, He W J, Yang L W, Xu J L, Xing D Y, Lyu W K . Genetic dissection of grain chalkiness in indica mini-core germplasm using genome-wide association method. Acta Agron Sin, 2015,41:1007-1016 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.01007
[21] Xian J Q, Kai C, Wen K L, Xiao X O, Ya J Z, Dan Y X, Long W Y, Fang J F, Jie Y, Jian L X, Tian Q Z, Zhi K L . Examining two sets of introgression lines reveals background independent and stably expressed QTL that improve grain appearance quality in rice (Oryza sativa L.). Theor Appl Genet, 2017,130:951-967
[22] Zhou L, Chen L, Jiang L, Zhang W, Liu L, Liu X, Zhao Z, Liu S, Zhang L, Wang J, Wan J . Fine mapping of the grain chalkiness QTL qPGWC-7 in rice(Oryza sativa L.). Theor Appl Genet, 2009,118:581-590
[23] Guo T, Liu X, Wan X, Weng J, Liu S, Liu X, Chen M, Li J, Su N, Wu F, Cheng Z, Guo X, Lei C, Wang J, Jiang L, Wan J . Identification of a stable quantitative trait locus for percentage grains with white chalkiness in rice (Oryza sativa). J Integr Plant Biol, 2011,53:598-607
[24] Gao Y, Liu C, Li Y, Zhang A, Dong G, Xie L, Zhang B, Ruan B, Hong K, Xue D, Zeng D, Guo L, Qian Q, Gao Z . QTL analysis for chalkiness of rice and fine mapping of a candidate gene for qACE9. Rice(N Y), 2016,9:41
doi: 10.1186/s12284-016-0114-5
[25] Li Y, Fan C, Xing Y, Yun P, Luo L, Yan B, Peng B, Xie W, Wang G, Li X, Xiao J, Xu C, He Y . Chalk5 encodes a vacuolar H(+)-translocating pyrophosphatase influencing grain chalkiness in rice. Nat Genet, 2014,46:398-404
[26] 胡苗, 孙志忠, 孙学武, 谭炎宁, 余东, 刘瑞芬, 袁贵龙, 丁佳, 袁定阳, 段美娟 . 利用高密度SNP标记定位水稻粒形相关QTL. 杂交水稻, 2015,30(5):54-58
doi: 10.16267/j.cnki.1005-3956.201505019
Hu M, Sun Z Z, Sun X W, Tan Y N, Yu D, Liu R F, Yuan G L, Ding J, Yuan D Y, Duan M J . Mapping of rice grain shape relevant QTLs using high-density SNP markers. Hybrid Rice, 2015,30(5):54-58 (in Chinese with English abstract)
doi: 10.16267/j.cnki.1005-3956.201505019
[27] Sun X, Liu D, Zhang X, Li W, Liu H, Hong W, Jiang C, Guan N, Ma C, Zeng H, Xu C, Song J, Huang L, Wang C, Shi J, Wang R, Zheng X, Lu C, Wang X, Zheng H . SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS One, 2013,8(3):e58700
doi: 10.1371/journal.pone.0058700
[28] Wei Q, Wang Y, Qin X, Zhang Y, Zhang Z, Wang J, Li J, Lou Q, Chen J . An SNP-based saturated genetic map and QTL analysis of fruit-related traits in cucumber using specific-length amplified fragment (SLAF) sequencing. BMC Genomics, 2014,15:1158
doi: 10.1186/1471-2164-15-1158
[29] Zhang Y, Wang L, Xin H, Li D, Ma C, Ding X, Hong W, Zhang X . Construction of a high-density genetic map for sesame based on large scale marker development by specific length amplified fragment (SLAF) sequencing. BMC Plant Biol, 2013,13:141
doi: 10.1186/1471-2229-13-141
[30] Kozich J J, Westcott S L, Baxter N T, Highlander S K, Schloss P D . Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microb, 2013,79:5112-5120
doi: 10.1128/AEM.01043-13
[31] Liu D, Ma C, Hong W, Huang L, Liu M, Liu H, Zeng H, Deng D, Xin H, Song J, Xu C, Sun X, Hou X, Wang X, Zheng H . Construction and analysis of high-density linkage map using high-throughput sequencing data. PLoS One, 2014,9(6):e98855
doi: 10.1371/journal.pone.0098855
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[3] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[4] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[5] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[6] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[7] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[8] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[9] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[10] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[11] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[12] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[13] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[14] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[15] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!