作物学报 ›› 2019, Vol. 45 ›› Issue (3): 354-364.doi: 10.3724/SP.J.1006.2019.84095
Hong-Ju JIAN,Bo YANG,Yang-Yang LI,Hong YANG,Lie-Zhao LIU,Xin-Fu XU,Jia-Na LI()
摘要:
植物磷脂酰乙醇胺结合蛋白(phosphatidylethanolamine-binding protein, PEBP)基因对于控制开花时间具有重要作用。油菜作为世界上最重要的油料作物之一, 与模式植物拟南芥具有相似的开花习性。但有关油菜开花基因的功能研究相对较少。本研究利用拟南芥PEBP基因家族蛋白序列在油菜基因组内进行BlastP分析, 获得油菜PEBP家族成员, 并对其进行基因结构分析、motif预测、复制事件、进化树构建、选择压力分析和组织表达分析。结果表明, 共有26个油菜PEBP基因成员得到鉴定, 大部分成员含有4个外显子和3个内含子, motif-1和motif -2是PEBP成员的特征基序, 超过76.9%的成员属于片段复制扩增事件。进化树分析显示, PEBP分为3个亚家族, 基于转录组测序的组织表达数据表明油菜26个PEBP成员具有非常明显的组织表达特性。以上研究结果, 极大丰富了我们对甘蓝型油菜开花基因及调控模式的认识, 为进一步的分子育种提供了理论基础。
[1] |
Bouché F, Lobet G, Tocquin P, Périlleux C . FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucl Acids Res, 2016,44(D1):D1167-D1171.
doi: 10.1093/nar/gkv1054 pmid: 26476447 |
[2] |
Srikanth A, Schmid M . Regulation of flowering time: all roads lead to Rome . Cell Mol Life Sci, 2011,68:2013-2037.
doi: 10.1007/s00018-011-0673-y pmid: 21611891 |
[3] |
Putterill J, Laurie R, Macknight R . It’s time to flower: the genetic control of flowering time . Bioessays, 2004,26:363-373.
doi: 10.1002/(ISSN)1521-1878 |
[4] |
Roux F, Touzet P, Cuguen J, Le Corre V . How to be early flowering: an evolutionary perspective . Trends Plant Sci, 2006,11:375-381.
doi: 10.1016/j.tplants.2006.06.006 pmid: 16843035 |
[5] | Fornara F, de Montaigu A, Coupland G . SnapShot: control of flowering in Arabidopsis . Cell, 2010,141(3), doi: 10.1016/j.cell. 2010.04.024. |
[6] |
Turck F, Fornara F, Coupland G . Regulation and identity of florigen: FLOWERING LOCUS T moves center stage . Annu Rev Plant Biol, 2008,59:573-594.
doi: 10.1109/TASC.2007.898014 pmid: 18444908 |
[7] |
Kikuchi R, Kawahigashi H, Ando T, Tonooka T, Handa H . Molecular and functional characterization of PEBP genes in barley reveal the diversification of their roles in flowering. Plant Physiol, 2009,149:1341-1353.
doi: 10.1104/pp.108.132134 pmid: 19168644 |
[8] | Karlgren A, Gyllenstrand N, Källman T, Sundström J F, Moore D, Lascoux M, Lagercrantz U . Evolution of the PEBP gene family in plants: functional diversification in seed plant evolution. Plant Physiol, 2011,156:1967-1977. |
[9] | Tao Y B, Luo L, He L L, Ni J, Xu Z F . A promoter analysis of MOTHER OF FT AND TFL1 1 (JcMFT1), a seed-preferential gene from the biofuel plant Jatropha curcas. J Plant Res, 2014,127:513-524. |
[10] |
Peng F Y, Hu Z, Yang R C . Genome-wide comparative analysis of flowering-related genes in Arabidopsis, wheat, and barley. Int J Plant Genomics, 2015,2015:874361.
doi: 10.1155/2015/874361 pmid: 4576011 |
[11] | Yamaguchi A, Kobayashi Y, Goto K, Abe M, Araki T . TWIN SISTER OF FT (TSF) acts as a floral pathway integrator redundantly with FT. Plant Cell Physiol, 2005,46:1175-1189. |
[12] | Huang N C, Jane W N, Chen J, Yu T S . Arabidopsis thaliana CENTRORADIALIS homologue( ATC) acts systemically to inhibit floral initiation in Arabidopsis. Plant J, 2012,72:175-184. |
[13] | Yoo S Y, Kardailsky I, Lee J S, Weigel D, Ahn J H . Acceleration of flowering by overexpression of MFT (MOTHER OF FT AND TFL1). Mol Cells, 2004,17:95-101. |
[14] |
Kardailsky I, Shukla V K, Ahn J H, Dagenais N, Christensen S K, Nguyen J T, Chory J, Harrison M J, Weigel D . Activation tagging of the floral inducer FT. Science, 1999,286:1962-1965.
doi: 10.1126/science.286.5446.1962 |
[15] |
Jang S, Torti S, Coupland G . Genetic and spatial interactions between FT, TSF and SVP during the early stages of floral induction in Arabidopsis. Plant J, 2009,60:614-625.
doi: 10.1111/j.1365-313X.2009.03986.x pmid: 19656342 |
[16] |
Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E . Inflorescence commitment and architecture in Arabidopsis . Science, 1997,275:80-83.
doi: 10.1126/science.275.5296.80 pmid: 8974397 |
[17] | Ratcliffe O J, Bradley D J, Coen E S . Separation of shoot and floral identity in Arabidopsis . Development, 1999,126:1109-1120. |
[18] | Conti L, Bradley D . TERMINAL FLOWER1 is a mobile signal controlling Arabidopsis architecture. Plant Cell, 2007,19:767-778. |
[19] |
Hanano S, Goto K . Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. Plant Cell, 2011,23:3172-3184.
doi: 10.1105/tpc.111.088641 |
[20] |
Ryu J Y, Lee H J, Seo P J, Jung J H, Ahn J H, Park C M . The Arabidopsis floral repressor BFT delays flowering by competing with FT for FD binding under high salinity . Mol Plant, 2014,7:377-387.
doi: 10.1093/mp/sst114 pmid: 23935007 |
[21] |
Xi W, Liu C, Hou X, Yu H . MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. Plant Cell, 2010,22:1733-1748.
doi: 10.4161/psb.5.10.13161 pmid: 20551347 |
[22] |
Wang Z, Zhou Z, Liu Y, Liu T, Li Q, Ji Y, Li C, Fang C, Wang M, Wu M, Shen Y, Tang T, Ma J, Tian Z . Functional evolution of phosphatidylethanolamine binding proteins in soybean and Arabidopsis . Plant Cell, 2015,27:323-336.
doi: 10.1105/tpc.114.135103 pmid: 25663621 |
[23] |
Nan H, Cao D, Zhang D, Li Y, Lu S, Tang L, Yuan X, Liu B, Kong F . GmFT2a and GmFT5a redundantly and differentially regulate flowering through interaction with and upregulation of the bZIP transcription factor GmFDL19 in soybean. PLoS One, 2014,9:0097669.
doi: 10.1371/journal.pone.0097669 pmid: 24845624 |
[24] |
Chardon F, Damerval C . Phylogenomic analysis of the PEBP gene family in cereals. J Mol Evol, 2005,61:579-590.
doi: 10.1007/s00239-004-0179-4 pmid: 16170456 |
[25] | Komiya R, Ikegami A, Tamaki S, Yokoi S, Shimamoto K . Hd3a and RFT1 are essential for flowering in rice. Development, 2008,135:767-774. |
[26] |
Meng X, Muszynski M G, Danilevskaya O N . The FT-Like ZCN8 gene functions as a floral activator and is involved in photoperiod sensitivity in maize. Plant Cell, 2011,23:942-960.
doi: 10.1105/tpc.110.081406 pmid: 21441432 |
[27] |
Raman H, Raman R, Coombes N, Song J, Prangnell R, Bandaranayake C, Tahira R, Sundaramoorthi V, Killian A, Meng J, Dennis E S, Balasubramanian S . Genome-wide association analyses reveal complex genetic architecture underlying natural variation for flowering time in canola . Plant Cell Environ, 2016,39:1228-1239.
doi: 10.1111/pce.12644 pmid: 26428711 |
[28] |
Xu L, Hu K, Zhang Z, Guan C, Chen S, Hua W, Li J, Wen J, Yi B, Shen J, Ma C, Tu J, Fu T . Genome-wide association study reveals the genetic architecture of flowering time in rapeseed ( Brassica napus L.). DNA Res, 2016,23:43-52.
doi: 10.1093/dnares/dsv035 |
[29] |
Wang J, Qiu Y, Cheng F, Chen X, Zhang X, Wang H, Song J, Duan M, Yang H, Li X . Genome-wide identification, characterization, and evolutionary analysis of flowering genes in radish ( Raphanus sativus L.). BMC Genomics, 2017,18, doi: 10.1186/s12864-017-4377-z.
doi: 10.1186/s12864-017-4377-z |
[30] |
Zhang X, Wang C, Pang C, Wei H, Wang H, Song M, Fan S, Yu S . Characterization and functional analysis of PEBP family genes in upland cotton ( Gossypium hirsutum L.). PLoS One, 2016,11:0161080.
doi: 10.1371/journal.pone.0161080 pmid: 725 |
[31] | Książkiewicz M, Rychel S, Nelson M N, Wyrwa K, Naganowska B, Wolko B . Expansion of the phosphatidylethanolamine binding protein family in legumes: a case study of Lupinus angustifolius L. FLOWERING LOCUS T homologs, LanFTc1 and LanFTc2. BMC Genomics, 2016,17, doi: 10.1186/s12864-016-3150-z. |
[32] | Leeggangers H A C F, Rosilio-Brami T, Bigas-Nadal J, Rubin N, van Dijk A D J, Nunez de Caceres Gonzalez F F, Saadon-Shitrit S, Nijveen H, Hilhorst H W M, Immink R G H, Zaccai M . Tulipa gesneriana and Lilium longiflorum PEBP genes and their putative roles in flowering time control. Plant Cell Physiol, 2018,59:90-106. |
[33] |
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S . MEGA6: molecular evolutionary genetics analysis version 6.0 . Mol Biol Evol, 2013,30:2725-2729.
doi: 10.1093/molbev/mst197 |
[34] |
Wang D P, Wan H L, Zhang S, Yu J . Gamma-MYN: a new algorithm for estimating Ka and Ks with consideration of variable substitution rates . Biol Direct, 2009,4, doi: 10.1186/1745-6150-4-20.
doi: 10.1186/1745-6150-4-20 pmid: 2702329 |
[35] |
Danilevskaya O N, Meng X, Hou Z, Ananiev E V, Simmons C R . A genomic and expression compendium of the expanded PEBP gene family from maize. Plant Physiol, 2008,146:250-264.
doi: 10.1104/pp.107.109538 pmid: 17993543 |
[36] |
Guo Y, Hans H, Christian J, Molina C . Mutations in single FT- and TFL1-paralogs of rapeseed( Brassica napus L.) and their impact on flowering time and yield components. Front Plant Sci, 2014,5:282.
doi: 10.3389/fpls.2014.00282 pmid: 4060206 |
[37] |
Carmona M J, Calonje M , Martínez-Zapater J M. The FT/TFL1 gene family in grapevine. Plant Mol Biol, 2007,63:637-650.
doi: 10.1007/s11103-006-9113-z pmid: 17160562 |
[38] | Carmel-Goren L, Liu Y S, Lifschitz E, Zamir D . The SELF- PRUNING gene family in tomato. Plant Mol Biol, 2003,52:1215-1222. |
[39] |
Hedman H, Källman T, Lagercrantz U . Early evolution of the MFT-like gene family in plants. Plant Mol Biol, 2009,70:359-369.
doi: 10.1007/s11103-009-9478-x pmid: 19288213 |
[40] |
Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T . A pair of related genes with antagonistic roles in mediating flowering signals . Science, 1999,286:1960-1962.
doi: 10.1126/science.286.5446.1960 |
[41] |
Baumann K, Venail J, Berbel A, Domenech M J, Money T, Conti L, Hanzawa Y, Madueno F, Bradley D . Changing the spatial pattern of TFL1 expression reveals its key role in the shoot meristem in controlling Arabidopsis flowering architecture. J Exp Bot, 2015,66:4769-4780.
doi: 10.1093/jxb/erv247 pmid: 4507777 |
[42] | Yoo S J, Chung K S, Jung S H, Yoo S Y, Lee J S, Ahn J H . BROTHER OF FT AND TFL1 (BFT) has TFL1-like activity and functions redundantly with TFL1 in inflorescence meristem development in Arabidopsis. Plant J, 2010,63:241-253. |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[3] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[4] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[5] | 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8和BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180. |
[6] | 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190. |
[7] | 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221. |
[8] | 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026. |
[9] | 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811. |
[10] | 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839. |
[11] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[12] | 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872. |
[13] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[14] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[15] | 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623. |
|