欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (3): 365-380.doi: 10.3724/SP.J.1006.2019.84099

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蓝型油菜NRT1.5NRT1.8家族基因的生物信息学分析及其对氮-镉胁迫的响应

梁桂红1,2,华营鹏1,2,周婷1,2,廖琼1,2,宋海星1,2,张振华1,2,*()   

  1. 1湖南农业大学资源环境学院, 湖南长沙 410128
    2南方粮油作物协同创新中心, 湖南长沙 410128
  • 收稿日期:2018-07-18 接受日期:2018-10-08 出版日期:2019-03-12 网络出版日期:2018-11-02
  • 通讯作者: 张振华
  • 作者简介:E-mail: ghliang1119@163.com
  • 基金资助:
    本研究由国家重点研发计划项目(2017YFD0200100);本研究由国家重点研发计划项目(2017YFD0200103);国家现代农业(油菜)产业技术体系建设专项资助

Bioinformatics analysis and response to nitrate-cadmium stress of NRT1.5 and NRT1.8 family genes in Brassica napus

Gui-Hong LIANG1,2,Ying-Peng HUA1,2,Ting ZHOU1,2,Qiong LIAO1,2,Hai-Xing SONG1,2,Zhen-Hua ZHANG1,2,*()   

  1. 1 College of Resource and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
    2 Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha 410128, Hunan, China
  • Received:2018-07-18 Accepted:2018-10-08 Published:2019-03-12 Published online:2018-11-02
  • Contact: Zhen-Hua ZHANG
  • Supported by:
    This study was supported by the National Key R&D Program of China(2017YFD0200100);This study was supported by the National Key R&D Program of China(2017YFD0200103);the China Agriculture Research System

摘要:

植物对硝酸盐的吸收和转运需要硝酸盐转运体(nitrate transporters, NRTs)的协助。在拟南芥中, 硝酸盐的长途转运及其在根部和地上部的分配, 主要受NRT1家族的两个成员NRT1.5NRT1.8的协同调控, 且两者的表达均受到硝酸盐的强烈诱导。本文以AtNRT1.5AtNRT1.8基因序列为基础序列, 采用生物信息学方法鉴定了白菜、甘蓝和甘蓝型油菜中NRT1.5NRT1.8同源基因, 并对基因结构和分子特性、基因拷贝数变异、基因染色体分布、系统进化树、蛋白保守序列比对和跨膜结构域、基因响应低氮和镉胁迫的转录组测序以及基因共表达网络进行了分析。结果表明, 白菜、甘蓝及甘蓝型油菜中NRT1.5和NRT1.8蛋白均含有保守的跨膜结构域和保守基序(F-Y-L-A-L-N-L- G-S-L), 属于MFS (major facilitator superfamily)超家族的小肽转运体PTR (peptide transporter)家族。转录组测序结果表明, 甘蓝型油菜低氮处理72 h, 根部NRT1.5基因的表达丰度上调而抑制NRT1.8的表达; 镉处理条件下, 乙烯/茉莉酸-硝酸盐转运体介导的信号途径能够促进NRT1.8表达上调而抑制NRT1.5的表达, 从而使更多的硝酸盐从地上部运输到根部, 提高植物抗镉胁迫的能力。本研究为进一步了解甘蓝型油菜NRT1.5NRT1.8家族基因的生物学功能及其对氮-镉胁迫的响应奠定基础, 同时为NRT1.5NRT1.8家族基因在其他物种中的生物信息学研究提供参考。

关键词: 甘蓝型油菜, 生物信息学, NRT1.5, NRT1.8, 硝酸盐,

Abstract:

The absorption and transportation of nitrate in plants require the assistance of nitrate transporters (NRTs). The expression of two members of the NRT1 family, including NRT1.5 and NRT1.8 genes was strongly induced by nitrate, and regulated the long-distance transport and distribution of nitrate between roots and shoots in Arabidopsis. NRT1.5 and NRT1.8 homologous genes in B. rapa, B. oleracea, and B. napus were identified by bioinformatics with the basic sequences of AtNRT1.5 and AtNRT1.8 and analyzed in gene structures and proteins molecular characterization, gene copy number variations, chromosome locations, evolutionary relationship tree, proteins conservative sequence alignment and the transmembrane domains. NRT1.5 and NRT1.8 responsive to the low concentration nitrate and cadmium stress were also determined by transcriptome analysis and co-expression network analysis, showing that NRT1.5 and NRT1.8 proteins belong to major facilitator superfamily (MFS) and peptide transporter (PTR) with the conservative transmembrane domains and motifs (F-Y-L-A-L-N-L-G-S-L) in B. rapa, B. oleracea, and B. napus. High-throughput transcriptome analysis showed that the expression of NRT1.5 gene was up-regulated and the NRT1.8 was down-regulated by low concentration nitrate treatment for 72 h in roots, which caused more nitrate transferred from roots to shoots. On the contrary, the ethylene/jasmonic acid-NRT signaling module could promote NRT1.8 up-regulation and inhibit the expression of NRT1.5 by cadmium treatment. So that more nitrate transported from shoots to roots and improved the ability of plants to resist cadmium stress. This study is valuable for the research of biological functions of NRT1.5 and NRT1.8 family genes in B. napus and the responses to nitrate-cadmium stress. Our results also provide references for the bioinformatic study of NRT1.5 and NRT1.8 family genes in other plant species.

Key words: Brassica napus, bioinformatics, NRT1.5, NRT1.8, nitrate, cadmium

表1

白菜、甘蓝和甘蓝型油菜NRT1.5和NRT1.8基因的分子特性"

基因名
Gene name
基因编号
Gene ID
分区
Block
亚类
Subgenome
物理位置
Physical position
编码区长度
CDS (bp)
外显子/内含子Exon/intron
NRT1.5
BraA5.NRT1.5 Bra010165 B MF2 15109908-15113350 1815 5/4
BraA9.NRT1.5 Bra023267 B LF 20166714-20170510 1833 5/4
BolC5.NRT1.5a Bol020904 B MF2 13227461-13230901 1812 5/4
BolC5.NRT1.5b Bol022226 B LF 10183303-10186752 1236 5/4
BnaA5.NRT1.5 BnaA05g35790D B MF2 1269482-1274007 1845 6/5
BnaA9.NRT1.5 BnaA09g24330D B LF 17085147-17089456 1863 6/5
BnaC5.NRT1.5a BnaC05g28620D B MF2 26898087-26903213 1845 6/5
BnaC5.NRT1.5b BnaC05g24580D B LF 19037761-19041900 1860 6/5
NRT1.8
BraA1.NRT1.8 Bra013547 U LF 6243271-6245298 1752 4/3
BraA3.NRT1.8 Bra038763 U MF1 24230588-24232594 1752 4/3
BolC1.NRT1.8 Bol028440 U LF 8086050-8088075 1752 4/3
BolC6.NRT1.8 Bol024295 U MF1 42081659-42082729 897 3/2
BnaA1.NRT1.8 BnaA01g11510D U LF 5715790-5718126 1752 4/3
BnaA3.NRT1.8 BnaA03g44820D U MF1 22774854-22776862 1752 4/3
BnaC7.NRT1.8 BnaC07g36810D U MF1 38737319-38739325 1752 4/3
BnaCn.NRT1.8 BnaCnng78690D U LF 80520183-80521816 1167 3/2

表2

白菜、甘蓝和甘蓝型油菜NRT1.5和NRT1.8蛋白的分子特性"

基因名
Gene name
氨基酸数Amino acids 主要氨基酸 Major amino acids 碱性氨基酸Arg+Lys 酸性氨基酸Asp+Glu 分子量MW(kD) 等电点pI 不稳定系数Instability index 亲水性GRAVY 脂肪指数Aliphatic index
NRT1.5
BraA5.NRT1.5 604 Leu, Ser 58 63 67.64 5.93 34.13 0.096 88.79
BraA9.NRT1.5 610 Leu, Ser 59 62 68.17 6.29 31.20 0.073 89.18
BolC5.NRT1.5a 603 Leu, Ser 58 63 67.45 5.93 33.33 0.094 88.77
BolC5.NRT1.5b 411 Leu, Ser 38 44 45.80 5.63 27.54 -0.006 86.13
BnaA5.NRT1.5 614 Leu, Ser 59 64 68.72 5.93 34.82 0.094 88.62
BnaA9.NRT1.5 620 Leu, Ser 60 64 69.41 6.14 32.08 0.082 89.47
BnaC5.NRT1.5a 614 Leu, Ser 59 64 68.71 5.93 34.68 0.094 88.45
BnaC5.NRT1.5b 619 Leu, Ser 59 62 69.35 6.35 33.07 0.094 89.77
NRT1.8
BraA1.NRT1.8 583 Leu, Ser 48 51 64.72 6.22 27.23 0.209 91.66
BraA3.NRT1.8 583 Leu, Ala 51 51 64.55 7.06 29.40 0.218 94.70
BolC1.NRT1.8 583 Leu, Ser 48 52 64.67 6.05 28.13 0.211 92.16
BolC6.NRT1.8 298 Leu, Ala 26 24 32.84 8.18 18.64 0.088 88.36
BnaA1.NRT1.8 583 Leu, Ser 48 51 64.60 6.22 27.84 0.211 91.17
BnaA3.NRT1.8 583 Leu, Ala 52 51 64.60 7.52 27.69 0.208 94.70
BnaC7.NRT1.8 583 Leu, Ser 53 50 64.67 8.18 27.88 0.207 94.85
BnaCn.NRT1.8 388 Leu, Ser 37 38 43.81 6.60 32.07 0.110 87.96

图1

白菜、甘蓝、甘蓝型油菜及拟南芥NRT1.5和NRT1.8基因的拷贝数变异 柱状图顶部数值为该物种拷贝的基因数目。"

附图1

NRT1.5和NRT1.8基因在白菜、甘蓝、甘蓝型油菜及拟南芥中的染色体定位 图a表示NRT1.5基因在拟南芥、甘蓝型油菜、甘蓝及白菜中的染色体定位;图b表示NRT1.8基因在拟南芥、甘蓝型油菜、甘蓝及白菜中的染色体定位。"

图2

白菜、甘蓝、甘蓝型油菜及拟南芥NRT1.5和NRT1.8的基因结构特征 图a表示拟南芥、白菜、甘蓝及甘蓝型油菜NRT1.5的基因结构特征; 图b表示拟南芥、白菜、甘蓝及甘蓝型油菜NRT1.8的基因结构特征。其中, 黄色部分代表CDS序列, 蓝色部分代表上游基因和下游基因, 黑色细线代表基因的内含子。"

图3

不同物种NRT1.5和NRT1.8蛋白的系统发育关系 图a表示在双子叶和单子叶植物中NRT1.5蛋白的系统发育关系; 图b表示在双子叶和单子叶植物中NRT1.8蛋白的系统发育关系。其中, 绿色部分代表双子叶植物, 包括拟南芥、白菜、甘蓝、甘蓝型油菜和胡杨, 红色部分代表单子叶植物, 包括高粱、水稻、小米、玉米和二穗短柄草。"

图4

白菜、甘蓝及甘蓝型油菜中NRT1.5和NRT1.8蛋白的同义突变频率(Ks)和非同义突变频率(Ka) 图a, b, c分别表示白菜、甘蓝及甘蓝型油菜NRT1.5蛋白的同义突变频率和非同义突变频率; 图d, e, f分别表示白菜、甘蓝及甘蓝型油菜NRT1.8蛋白的同义突变频率和非同义突变频率。"

图5

白菜、甘蓝、甘蓝型油菜及拟南芥NRT1.5和NRT1.8蛋白的保守序列比对 图a表示拟南芥、白菜、甘蓝及甘蓝型油菜NRT1.5蛋白的保守序列比对; 图b表示拟南芥、白菜、甘蓝及甘蓝型油菜NRT1.8蛋白的保守序列比对。其中, 蓝色虚线部分表示PTR家族的保守序列(F-Y-L-A-L-N-L-G-S-L)。"

图6

白菜、甘蓝、甘蓝型油菜及拟南芥NRT1.5和NRT1.8蛋白的保守基序特征 图a, d分别表示NRT1.5和NRT1.8蛋白在拟南芥、白菜、甘蓝及甘蓝型油菜中的系统进化关系; 图b, e分别表示NRT1.5和NRT1.8蛋白在拟南芥、白菜、甘蓝及甘蓝型油菜的保守基序; 图c, f分别表示NRT1.5和NRT1.8蛋白中每个保守基序的序列。"

图7

甘蓝型油菜NRT1.5和NRT1.8蛋白的跨膜结构域 图a~d表示甘蓝型油菜中4个NRT1.5蛋白的跨膜结构域, 其中a表示Bna.A5.NRT1.5, b表示Bna.A9.NRT1.5, c表示Bna.C5.NRT1.5a, d表示Bna.C5.NRT1.5b。图e~h表示甘蓝型油菜中4个NRT1.8蛋白的跨膜结构域, 其中a表示Bna.A1.NRT1.8, f表示Bna.A3.NRT1.8, g表示Bna.C7.NRT1.8, h表示Bna.Cn.NRT1.8。"

图8

甘蓝型油菜NRT1.5和NRT1.8基因对低氮的响应及基因共表达网络分析 图a表示甘蓝型油菜地上部和根部NRT1.5家族基因在低氮处理0 h、3 h、72 h 时的基因表达丰度; 图b表示NRT1.5家族基因在低氮处理时的基因共表达网络分析。图c表示甘蓝型油菜地上部和根部NRT1.8家族基因在低氮处理0 h、3 h、72 h 时的基因表达丰度; 图d表示NRT1.8家族基因在低氮处理时的基因共表达网络分析; FPKM表示每千个碱基转录每百万映射读取的fragments。"

图9

甘蓝型油菜NRT1.5和NRT1.8基因对镉胁迫的响应及基因共表达网络分析 图a和图b分别表示甘蓝型油菜地上部和根部NRT1.5家族基因在镉处理时的基因表达丰度; 图c表示NRT1.5家族基因在镉处理时的基因共表达网络分析。图d和图e分别表示甘蓝型油菜地上部和根部NRT1.8家族基因在镉处理时的基因表达丰度; 图f表示NRT1.8家族基因在镉处理时的基因共表达网络分析。FPKM表示每千个碱基转录每百万映射读取的fragments。图中所示显著性差异是单个基因对照和镉处理两两对比, 未达到显著性差异的图中未标记。误差线代表3个独立生物学重复的标准误, a和b表示差异显著(Ρ < 0.05)。"

[1] 李建勇, 龚继明 . 植物硝酸根信号感受与传导途径. 植物生理学报, 2011,47:111-118.
Li J Y, Gong J M . Nitrate signal sensing and transduction in higher plants. Plant Physiol J, 2011,47:111-118 (in Chinese with English abstract).
[2] Tang Y, Sun X C, Hu C X, Tan Q L, Zhao X H . Genotypic differences in nitrate uptake, translocation and assimilation of two Chinese cabbage cultivars [ Brassica campestris L. ssp. Chinesnsis( L.)]. Plant Physiol Biochem, 2013,70:14-20.
[3] Fan S C, Lin C S, Hsu P K, Lin S H, Tsay Y F . The Arabidopsis nitrate transporter NRT1.7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate. Plant Cell, 2009,21:2750-2761.
doi: 10.1105/tpc.109.067603 pmid: 19734434
[4] Orsel M, Chopin F, Leleu O, Smith S J, Krapp A, Daniel-Vedele F, Miller A J . Characterization of a two-component high-affinity nitrate uptake system in Arabidopsis. Physiology and protein- protein interaction. Plant Physiol, 2006,142:1304-1317.
doi: 10.1104/pp.106.085209 pmid: 17012411
[5] Møller A L, Pedas P, Andersen B, Svensson B, Schjoerring J K, Finnie C . Responses of barley root and shoot proteomes to long-term nitrogen deficiency, short-term nitrogen starvation and ammonium. Plant Cell Environ, 2011,34:2024-2037.
doi: 10.1111/j.1365-3040.2011.02396.x pmid: 21736591
[6] 张振华 . 作物硝态氮转运利用与氮素利用效率的关系. 植物营养与肥料学报, 2017,23:217-223.
doi: 10.11674/zwyf.15357
Zhang Z H . The relationship between nitrate transport and utilization in crop and nitrogen utilization efficiency. J Plant Nutr, 2017,23:217-223 (in Chinese with English abstract).
doi: 10.11674/zwyf.15357
[7] Dechorgnat J, Nguyen C T, Armengaud P, Jossier M, Diatloff E, Filleur S, Daniel-Vedele F . From the soil to the seeds: the long journey of nitrate in plants. J Exp Bot, 2011,62:1349-1359.
doi: 10.1093/jxb/erq409 pmid: 21193579
[8] Lin S H, Kuo H F, Canivenc G, Lin C S, Lepetit M, Hsu P K, Tillard P, Lin H L, Wang Y Y, Tsai C B, Gojon A, Tsay Y F . Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport. Plant Cell, 2008,20:2514-2528.
doi: 10.1105/tpc.108.060244 pmid: 18780802
[9] Chen C Z, Lv X F, Li J Y, Yi H Y, Gong J M . Arabidopsis NRT1.5 is another essential component in the regulation of nitrate reallocation and stress tolerance. Plant Physiol, 2012,159:1582-1590.
doi: 10.1104/pp.112.199257 pmid: 22685171
[10] Li J Y, Fu Y L, Pike S M, Bao J, Tian W, Zhang Y, Chen C Z, Zhang Y, Li H M, Huang J, Li L G, Schroeder J I, Gassmann W, Gong J M . The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance. Plant Cell, 2010,22:1633-1646.
doi: 10.1105/tpc.110.075242 pmid: 20501909
[11] Zhang G B, Yi H Y, Gong J M . The Arabidopsis ethylene/jasmonic acid-NRT signaling module coordinates nitrate reallocation and the trade-off between growth and environmental adaption. Plant Cell, 2014,26:3984-3998.
doi: 10.1105/tpc.114.129296 pmid: 25326291
[12] Léran S, Varala K, Boyer J C, Chiurazzi M, Crawpord N, Daniel-Vedele F, David L, Dickstein R, Fernandez E, Forde B, Gassmann W, Geiger D, Gojon A, Gong J M, Halkier B A, Harris J M, Hedrich R, Limami A M, Rentsch D, Seo M, Tsay Y F, Zhang M, Coruzzi G, Lacombe B . A unified nomenclature of nitrate transporter 1/peptide transporter family members in plants. Trends Plant Sci, 2014,19:5-9.
doi: 10.1016/j.tplants.2013.08.008 pmid: 24055139
[13] 宋田丽, 周建建, 徐晨曦, 蔡晓锋, 戴绍军, 王全华, 王小丽 . 植物硝酸盐转运蛋白功能及表达调控研究进展. 上海师范大学学报(自然科学版), 2017,46:740-750.
doi: 10.3969/J.ISSN.1000-5137.2017.05.019
Song T L, Zhou J J, Xu C X, Cai X F, Dai S J, Wang Q H, Wang X L . Progress in function and regulation of nitrate transporters in plants. J Shanghai Nor Univ ( Nat Sci), 2017,46:740-750 (in Chinese with English abstract).
doi: 10.3969/J.ISSN.1000-5137.2017.05.019
[14] 殷艳, 陈兆波, 余健, 王汉中, 冯中朝 . 我国油菜生产潜力分析. 中国农业科技导报, 2010,12(3):16-21.
doi: 10.3969/j.issn.1008-0864.2010.03.03
Yin Y, Chen Z B, Yu J, Wang H Z, Feng Z C . Analysis of potential for rapeseed production in China. J Agric Sci Tech, 2010,12(3):16-21 (in Chinese with English abstract).
doi: 10.3969/j.issn.1008-0864.2010.03.03
[15] Blackshaw R E, Johnson E N, Gan Y T, May W E ,McAndrew D W, Barthet V, McDonald T, Wispinski D. Alternative oilseed crops for biodiesel feedstock on the Canadian prairies. Plant Sci, 2011,91:889-896.
doi: 10.4141/cjps2011-002
[16] Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J H, Bancroft I, Cheng F, Huang S, Li X, Hua W, Wang J, Wang X, Freeling M, Pires J C, Paterson A H, Chalhoub B, Wang B, Hayward A, Sharpe A G, Park B S, Weisshaar B, Liu B, Li B, Liu B, Tong C, Song C, Duran C, Peng C, Geng C, Koh C, Lin C, Edwards D, Mu D, Shen D, Soumpourou E, Li F, Fraser F, Conant G, Lassalle G, King G J, Bonnema G, Tang H, Wang H, Belcram H, Zhou H, Hirakawa H, Abe H, Guo H, Wang H, Jin H, Parkin I A, Batley J, Kim J S, Just J, Li J, Xu J, Deng J, Kim J A, Li J, Yu J, Meng J, Wang J, Min J, Poulain J, Wang J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links M G, Zhao M, Jin M, Ramchiary N, Drou N, Berkman P J, Cai Q, Huang Q, Li R, Tabata S, Cheng S, Zhang S, Zhang S, Huang S, Sato S, Sun S, Kwon S J, Choi S R, Lee T H, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li Y, Du Y, Liao Y, Lim Y, Narusaka Y, Wang Y, Wang Z, Li Z, Wang Z, Xiong Z, Zhang Z . The genome of the mesopolyploid crop species Brassica rapa. Nat Genet, 2011,43:1035-1039.
[17] Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin I A, Zhao M, Ma J, Yu J, Huang S, Wang X, Wang J, Lu K, Fang Z, Bancroft I, Yang T J, Hu Q, Wang X, Yue Z, Li H, Yang L, Wu J, Zhou Q, Wang W, King G J, Pires J C, Lu C, Wu Z, Sampath P, Wang Z, Guo H, Pan S, Yang L, Min J, Zhang D, Jin D, Li W, Belcram H, Tu J, Guan M, Qi C, Du D, Li J, Jiang L, Batley J, Sharpe A G, Park B S, Ruperao P, Cheng F, Waminal N E, Huang Y, Dong C, Wang L, Li J, Hu Z, Zhuang M, Huang Y, Huang J, Shi J, Mei D, Liu J, Lee T H, Wang J, Jin H, Li Z, Li X, Zhang J, Xiao L, Zhou Y, Liu Z, Liu X, Qin R, Tang X, Liu W, Wang Y, Zhang Y, Lee J, Kim H H, Denoeud F, Xu X, Liang X, Hua W, Wang X, Wang J, Chalhoub B, Paterson A H . The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun, 2014,5:3930.
[18] Bayer P E, Hurgobin B, Golicz A A, Chen C K, Yuan Y, Lee H, Renton M, Meng J, Li R, Long Y, Zou J, Bancroft I, Chalhoub B, King G J, Batley J, Edwards D . Assembly and comparison of two closely related Brassica napus genomes. Plant Biotechnol J, 2017,15:1602-1610
doi: 10.1111/pbi.12742 pmid: 5698052
[19] Chalhoub B, Denoeud F, Liu S, Parkin I A, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh C S, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N ,Le Paslier M C, Fan G, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi V H, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom C H, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X, Meng J, Ma J, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y, Hua W, Sharpe A G, Paterson A H, Guan C, Wincker P. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014,345:950-953.
[20] 轩红梅, 王永华, 魏利婷, 杨莹莹, 王利娜, 康国章, 郭天财 . 小麦幼苗叶片中硝酸盐转运蛋白NRT1NRT2家族基因对氮饥饿响应的表达分析. 麦类作物学报, 2014,34:1019-1028.
doi: 10.7606/j.issn.1009-1041.2014.08.01
Xuan H M, Wang Y H, Wei L T, Yang Y Y, Wang L N, Kang G Z, Guo T C . Transcription analysis of the genes encoding nitrate transporter NRT1 and NRT2 family in response to nitrogen starvation in wheat seedlings leaves. J Triticeae Crops, 2014,34:1019-1028 (in Chinese with English abstract).
doi: 10.7606/j.issn.1009-1041.2014.08.01
[21] 马翠 . 水稻硝酸盐转运蛋白基因OsNRT1.2OsNRT1.5超量表达材料的功能鉴定. 南京农业大学硕士论文, 江苏南京, 2011.
doi: 10.7666/d.Y2038161
Ma C . Characteristics of Over-expression for Nitrate Transporter Genes OsNRT1.2 and OsNRT1.5 in Rice. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2011 (in Chinese with English abstract).
doi: 10.7666/d.Y2038161
[22] 李红 . 拟南芥转运蛋白NRT1.5/NPF7.3调控K+在木质部装载的分子机制研究. 中国农业大学博士学位论文,北京, 2016.
Li H . Mechanism analyses of NRT1.5/NPF7.3-mediated K + release into the xylem in Arabidopsis. ChinaPhD Dissertation of China Agricultural University, Beijing, 2016 (in Chinese with English abstract).
[23] Wang X B, Wu J, Liang J L, Cheng F, Wang X W . Brassica database (BRAD) version 2.0: integrating and mining Brassicaceae species genomic resources. Database, 2015, 1-8.
[24] Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins M R, Appel R D, Bairoch A. Protein identification and analysis tools on the ExPASy server. In: Walker J M ed. The Proteomics Protocols Handbook. Totowa, NJ, USA: Humana Press Inc, 2005. pp 571-607.
[25] Hu B, Jin J, Guo A Y, Zhang H, Luo J, Gao G . GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics, 2015,31:1296-1297
doi: 10.1093/bioinformatics/btu817 pmid: 25504850
[26] Smith T F, Waterman M S . Identification of common molecular subsequences. J Mol Biol, 1981,147, 195-197.
doi: 10.1016/0022-2836(81)90087-5 pmid: 7265238
[27] Tamura K, Stecher G, Peterson D, Filipski A, Kumar S . MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol, 2013,30:2725-2729.
doi: 10.1093/molbev/mst197
[28] Larkin M A, Blackshields G, Brown N P, Chenna R ,McGettigan P A, McWilliam H, Valentin F, Wallace I M, Wilm A, Lopez R, Thompson J D, Gibson T J, Higgins D G. Clustal W and clustal X version 2.0. Bioinformatics, 2007,23:2947-2948.
doi: 10.1093/bioinformatics/btm404 pmid: 17846036
[29] Saitou N, Nei M . The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 1987,4:406-425.
[30] Bailey T L, Boden M, Buske F A, Frith M, Grant C E, Clementi L, Ren J, Li W W, Noble W S . MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res, 2009,37(Web Server issue):W202-W208.
doi: 10.1093/nar/gkp335 pmid: 19458158
[31] Hofmann K, Stoffel W . TMBase: a database of membrane spanning protein segments. Biol Chem Hoppe Seyler, 1993,374:166
[32] Hoagland D R, Arnon D I . The water culture method for growing plants without soil. California Agric Exp Stn Cireular, 1950,347:1-32.
doi: 10.1016/S0140-6736(00)73482-9
[33] Morin R D, Bainbridge M, Fejes A, Hirst M, Krzywinski M, Pugh T J ,McDonald H, Varhol R, Jones S J, Marra M A. Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. Bio Techniques, 2008,45:81-94.
[34] Hua Y P, Zhou T, Xu F S . Genome-scale mRNA transcriptomic insights into the responses of oilseed rape ( Brassica napus L.) to varying boron availabilities. Plant Soil, 2017,416:205-225.
doi: 10.1007/s11104-017-3204-2
[35] Guruprasad K, Reddy B V, Pandit M W . Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng, 1990,4:155-161.
doi: 10.1093/protein/4.2.155
[36] 王占军, 金伦, 徐忠东, 欧祖兰 . 麻风树LEC1基因的生物信息学分析. 生物学杂志, 2014,31(4):68-72.
doi: 10.3969/j.issn.2095-1736.2014.04.068
Wang Z J, Jin L, Xu Z D, Ou Z L . Bioinformatics analysis of gene LEC1 from Jatropha curcas. J Biol, 2014,31(4):68-72 (in Chinese with English abstract).
doi: 10.3969/j.issn.2095-1736.2014.04.068
[37] Hua Y P, Zhou T, Song H X, Guan C Y, Zhang Z H . Integrated genomic and transcriptomic insights into the two-component high-affinity nitrate transporters in allotetraploid rapeseed. Plant Soil, 2018,427:245-268.
doi: 10.1007/s11104-018-3652-3
[38] Cheng F, Wu J, Fang L, Wang X . Syntenic gene analysis between Brassica rapa and other Brassicaceae species. Front Plant Sci, 2012,3:198.
[39] Nekrutenko A, Makova K D, Li W H . The Ka/Ks ratio test for assessing the protein-coding potential of genomic regions: an empirical and simulation study. Genome Res, 2002,12:198-202.
doi: 10.1101/gr.200901
[40] Forde B G . Nitrate transporters in plants: structure, function and regulation. Biochim Biophys Acta, 2000,1465:219-235.
doi: 10.1016/S0005-2736(00)00140-1 pmid: 10748256
[41] Chakrabarti S, Bryant S H, Panchenko A R . Functional specificity lies within the properties and evolutionary changes of amino acids. J Mol Biol, 2007,373:801-810.
doi: 10.1016/j.jmb.2007.08.036 pmid: 2605514
[42] Tsay Y F, Chiu C C, Tsai C B, Ho C H, Hsu P K . Nitrate transporters and peptide transporters. FEBS Lett, 2007,581:2290-2300.
doi: 10.1016/j.febslet.2007.04.047 pmid: 17481610
[43] 尹辉, 牟书勇, 李冠 . 植物硝酸盐转运体的功能及其调控. 南方农业学报, 2012,43:425-430.
doi: 10.3969/j:issn.2095-1191.2012.04.425
Yin H, Mu S Y, Li G . Function and regulation of nitrate transporters in plants. J Southern Agric, 2012,43:425-430 (in Chinese with English abstract).
doi: 10.3969/j:issn.2095-1191.2012.04.425
[44] 汪进, 添先凤, 江昌俊, 李叶云 . 茶树硝酸盐转运蛋白基因的克隆和表达分析. 植物生理学报, 2014,50:983-988.
Wang J, Tian X F, Jiang C J, Li Y Y . Cloning and expression analysis of nitrate transporter gene in Camellia sinensis. Plant Physiol J, 2014,50:983-988 (in Chinese with English abstract).
[45] Almagro A, Lin S H, Tsay Y F . Characterization of the Arabidopsis nitrate transporter NRT1.6 reveals a role of nitrate in early embryo development. Plant Cell, 2008,20:3289-3299.
[46] 童依平, 蔡超, 刘全友, 李继云, 李振声 . 植物吸收硝态氮的分子生物学进展. 植物营养与肥料学报, 2004,10:433-440.
doi: 10.3321/j.issn:1008-505X.2004.04.018
Tong Y P, Cai C, Liu Q Y, Li J Y, Li Z S . Recent advances in molecular biology of nitrate transporters in higher plants. J Plant Nutr, 2004,10:433-440 (in Chinese with English abstract).
doi: 10.3321/j.issn:1008-505X.2004.04.018
[47] Theissen G, Becker A, Di Rosa A, Kanno A, Kim J T, Münster T, Winter K U, Saedler H . A short history of MADS-box genes in plants. Plant Mol Biol, 2000,42:115-149.
doi: 10.1023/A:1006332105728
[48] Kaufmann K, Melzer R, Theissen G . MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene, 2005,347:183-198.
doi: 10.1016/j.gene.2004.12.014 pmid: 15777618
[49] Wang P, Wang Z L, Cai R G, Li Y, Chen X G, Yin Y P . Physiological and molecular response of wheat roots to nitrate supply in seedling stage. Agric Sci China, 2011,10:695-704.
doi: 10.1016/S1671-2927(11)60052-7
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[4] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[5] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[6] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[7] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[8] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[9] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[10] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[11] 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析[J]. 作物学报, 2021, 47(5): 882-893.
[12] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[13] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[14] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[15] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!