作物学报 ›› 2019, Vol. 45 ›› Issue (5): 647-655.doi: 10.3724/SP.J.1006.2019.84123
• 作物遗传育种·种质资源·分子遗传学 • 下一篇
Le-Chen LI1,Guo-Zhong ZHU1,Xiu-Juan SU1,2,Wang-Zhen GUO1,*()
摘要:
海岛棉具有纤维品质好、抗病性强等优异性状, 不仅为纺织工业提供优质棉纤维原料, 也是陆地棉相关性状改良的重要供体材料。然而, 与陆地棉相比, 开展海岛棉的遗传多样性和基因分型研究相对较少。本研究基于CottonSNP80K芯片对282份不同来源的海岛棉品种/材料进行基因组SNP分型研究, 以选择高效鉴别海岛棉材料的核心位点组合。按照检出率大于95%、具多态性、最小等位频率(MAF)大于0.01、杂合率小于0.05、无冗余位点等条件筛选, 获得2594个高质量SNP位点。对上述位点设置不同数目梯度筛选, 确定最优核心位点数。随着位点个数的增多, 位点组合对海岛棉材料的识别率逐渐增加。当位点数为200时, 识别率为89%; 位点数提高到1500时, 识别率可达99%。进一步增加位点数, 识别率无显著变化。利用中选的1500个SNP位点检测供试材料, 其平均MAF值0.14, 平均杂合率0.007, 平均多态信息含量0.21。SNP位点的聚丙烯凝胶电泳验证表明, SNP-PCR与芯片分型结果一致性达98.3%。本研究提供了适于海岛棉指纹图谱构建、含1500位点的一套核心SNP位点组合, 可用于海岛棉遗传多样性分析和品种身份鉴定。
[1] |
Dai J, Dong H . Intensive cotton farming technologies in China: achievements, challenges and counter measures. Field Crops Res, 2014,155:99-110.
doi: 10.1016/j.fcr.2013.09.017 |
[2] | 汪志国, 王思明 . 美棉在中国的引种与发展. 中国农学通报, 2006,22:421-426. |
Wang Z G, Wang S M . Introduction and development of American cotton in China. Chin Agric Sci Bull, 2006,22:421-426 (in Chinese with English abstract). | |
[3] | 宋宪亮, 孙学振, 张天真, 王洪刚 . 棉花遗传多态性研究进展. 西北植物学报, 2004,24:2393-2397. |
Song X L, Sun X Z, Zhang T Z, Wang H G . Advances on genetic diversity of cotton (Gossypium) . Acta Bot Boreali-Occident Sin, 2004,24:2393-2397 (in Chinese with English abstract). | |
[4] | 姚贺盛, 张亚黎, 易小平, 薛军, 罗毅, 罗宏海, 张旺锋 . 海岛棉和陆地棉叶片光合特性、冠层结构及物质生产的差异. 中国农业科学, 2015,48:251-261. |
Yao H S, Zhang Y L, Yi X P, Xu J, Luo Y, Luo H H, Zhang W F . Study on differences in comparative canopy structure characteristics and photosynthetic carbon assimilation of field-grown pima cotton (Gossypium barbadense) and upland cotton(G. hirsutum). Sci Agric Sin, 2015,48:251-261 (in Chinese with English abstract). | |
[5] | Liu N, Tu L L, Tang W X, Gao W H, Lindsey K, Zhang X L . Small RNA and degradome profiling reveals a role for miRNAs and their targets in the developing fibers of Gossypium barbadense. Plant J, 2014,80:331-344. |
[6] | 孔庆平 . 我国海岛棉生产概况及比较优势分析. 中国棉花. 2002,29(12):19-23. |
Kong Q P . Analysis on the situation and comparative advantages of island cotton production in China. China Cotton, 2002,29(12):19-23 (in Chinese). | |
[7] | 刘霞, 白玉林, 王绎衡, 杜斌, 杨勇, 王承强, 李小童 . 海岛棉育种现状、未来方向以及生产建议. 中国棉花, 2015,42(10):11-13. |
Liu X, Bai Y L, Wang Y H, Du B, Yang Y, Wang C Q, Li X T . Breed situation, future development direction and production suggest of sea island cotton in China. China Cotton, 2015,42(10):11-13 (in Chinese). | |
[8] |
邰红忠, 练文明, 卢金宝 . 新疆海岛棉育种现状及存在问题. 中国棉花, 2013,40(6):15-17.
doi: 1000-632X(2013)06-0015-03 |
Tai H Z, Lian W M, Lu J B . Current situation and problems in island cotton breeding in Xinjiang. China Cotton, 2013,40(6):15-17 (in Chinese).
doi: 1000-632X(2013)06-0015-03 |
|
[9] |
Kuang M, Wei S J, Wang Y Q, Zhou D Y, Ma L, Fang D, Yang W H . Development of a core set of SNP markers for the identification of upland cotton cultivars in China. J Integr Agric, 2016,15:954-962.
doi: 10.1016/S2095-3119(15)61226-6 |
[10] | Sheidai M, Riazifar M, Hoordadian A, Alishah O . Genetic finger printing of salt- and drought-tolerant cotton cultivars ( Gossypium hirsutum) by IRAP-REMAP and SRAP molecular markers. Plant Gene, 2018,14:12-19. |
[11] | 潘兆娥, 何守朴, 贾银华 , Podolnaya L P 孙君灵, 王立如, 杜雄明. , 引进海岛棉种质的SSR遗传多样性分析. 植物遗传资源学报, 2014,15:399-404. |
Pan Z E, He S P, Jia Y H, Podolnaya L P, Sun J L, Wang L R, Du X M . Genetic diversity analysis of the sea island cotton introduced using SSR markers. J Plant Genet Resour, 2014,15:399-404 (in Chinese with English abstract). | |
[12] | 李金荣, 王小国, 朱永军, 张西英, 张薇 . 利用SSR标记对14个海岛棉品种的聚类分析. 新疆农业科学, 2009,46:237-241. |
Li J R, Wang X G, Zhu Y J, Zhang X Y, Zhang W . Cluster analysis on 14 sea-island cotton by SSRs. Xinjiang Agric Sci, 2009,46:237-241 (in Chinese with English abstract). | |
[13] | 李武, 倪薇, 林忠旭, 张献龙 . 海岛棉遗传多样性的SRAP标记分析. 作物学报, 2008,34:893-898. |
Li W, Ni W, Lin Z X, Zhang X L . Genetic diversity analysis of sea-island cotton cultivars using SRAP markers. Acta Agron Sin, 2008,34:893-898 (in Chinese with English abstract). | |
[14] | Wang S, Chen J D, Zhang W P, Hu Y, Chang L J, Fang L, Wang Q, Lü F N, Wu H T, Si Z F, Chen S Q, Cai C P, Zhu X F, Zhou B L, Guo W Z, Zhang T Z . Sequence-based ultra-dense genetic and physical maps reveal structural variations of allopolyploid cotton genomes. Genome Biol, 2015,16, doi: 10.1186/s13059-015- 0678-1. |
[15] | Liu X, Zhao B, Zheng H J, Hu Y, Lu G, Yang C Q, Chen J D, Chen J J, Chen D Y, Zhang L, Zhou Y, Wang L J, Guo W Z, Bai Y L, Ruan J X, Shangguan X X, Mao Y B, Shan C M, Jiang J P, Zhu Y Q, Jin L, Kang H, Chen S T, He X L, Wang R, Wang Y Z, Chen J, Wang L J, Yu S T, Wang B Y, Wei J, Song S C, Lu X Y, Gao Z C, Gu W Y, Deng X, Ma D, Wang S, Liang W H, Fang L, Cai C P, Zhu X F, Zhou B L, Chen Z J, Xu S H, Zhang Y G, Wang S Y, Zhang T Z, Zhao G P, Chen X Y . Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites. Sci Rep, 2015,5, doi: 10.1038/srep14139. |
[16] | Yuan D J, Tang Z H, Wang M J, Gao W H, Tu L L, Jin X, Chen L L, He Y H, Zhang L, Zhu L F, Li Y, Liang Q Q, Lin Z X, Yang X Y, Liu N A, Jin S X, Lei Y, Ding Y H, Li G L, Ruan X A, Ruan Y J, Zhang X L . The genome sequence of Sea-Island cotton (Gossypium barbadense) provides insights into the allopolyploidization and development of superior spinnable fibres. Sci Rep, 2015,5, doi: 10.1038/srep17662. |
[17] | Cai C P, Zhu G Z, Zhang T Z, Guo W Z . High-density 80 K SNP array is a powerful tool for genotyping G. hirsutum accessions and genome analysis. BMC Genomics, 2017,18, doi: 10.1186/s 12864-017-4062-2. |
[18] | 朱国忠, 张芳, 付洁, 李乐晨, 牛二利, 郭旺珍 . 适于陆地棉品种身份鉴定的SNP核心位点筛选与评价. 作物学报, 2018,44:1631-1639. |
Zhu G Z, Zhang F, Fu J, Li L C, Niu E L, Guo W Z . Genome-wide screening and evaluation of SNP core loci for identification of upland cotton varieties. Acta Agron Sin, 2018,44:1631-1639 (in Chinese with English abstract). | |
[19] | Zhang J, Stewart J M . Economical and rapid method for extracting cotton genomic DNA. J Cotton Sci, 2000,4:193-201. |
[20] | Fang L, Gong H, Hu Y, Liu C X, Zhou B L, Huang T, Wang Y K, Chen S Q, Fang D D, Du X M, Chen H, Chen J D, Wang S, Wang Q, Wan Q, Liu B L, Pan M, Chang L J, Wu H T, Mei G F, Xiang D, Li X H, Cai C P, Zhu X F, Chen Z J, Han B, Chen X Y, Guo W Z, Zhang T Z, Huang X H . Genomic insights into divergence and dual domestication of cultivated allotetraploid cottons. Genome Biol, 2017,18, doi: 10.1186/s13059-017-1167-5 |
[21] | Wang P, Ding Y Z, Lu Q X, Guo W Z, Zhang T Z . Development of Gossypium barbadense chromosome segment substitution lines in the genetic standard line TM-1 of Gossypium hirsutum. Chin Sci Bull, 2008,53:1512-1517. |
[22] | 马麒, 宿俊吉, 宁新柱, 李吉莲, 刘萍, 陈红, 林海, 邓福军 . 新疆海岛棉种质资源表型性状遗传多样性分析. 新疆农业科学, 2016,53:197-206. |
Ma Q, Su J J, Ning X Z, Li J L, Liu P, Chen H, Lin H, Deng F J . Genetic diversity analysis on phenotypic traits of sea island cotton ( G. barbadense) germplasm resources in Xinjiang. Xinjiang Agric Sci, 2016,53:197-206 (in Chinese with English abstract). | |
[23] | 李剑峰 . 中国长绒棉研究与生产概况. 江西棉花, 2008,30(3):8-11. |
Li J F . Survey of long-staple cotton research and production of China. Jiangxi Cotton, 2008,30(3):8-11 (in Chinese with English abstract). | |
[24] | 孙正文, 匡猛, 马峙英, 王省芬 . 利用CottonSNP63K芯片构建棉花品种的指纹图谱. 中国农业科学, 2017,50:4692-4704. |
Sun Z W, Kuang M, Ma Z Y, Wang S F . Construction of cotton variety fingerprints using CottonSNP63K array. Sci Agric Sin, 2017,50:4692-4704 (in Chinese with English abstract). | |
[25] | 吴大鹏, 房嫌嫌, 马梦楠, 陈进红, 祝水金 . 四个国家海岛棉品种资源的亲缘关系和遗传多态性研究. 棉花学报, 2010,22:104-109. |
Wu D P, Fang X X, Ma M N, Chen J H, Zhu S H . Genetic relationship and diversity of the germplasms inGossypium barbadense L. from four different countries using SSR markers. Cotton Sci, 22:104-109 (in Chinese with English abstract). | |
[26] | Ghislain M, Zhang D, Fajardo D, Huamán Z, Hijmans R J . Marker-assisted sampling of the cultivated Andeanpotato solanumphureja collection using RAPD markers. Genetic Resour Crop Evol, 1999,46:547-555. |
[27] |
Suzuki Y, Sekiya T, Hayashi K . Allele-specific polymerase chain reaction: a method for amplification and sequence determination of a single component among a mixture of sequence variants. Anal Biochem, 1991,192:82-84.
doi: 10.1016/0003-2697(91)90188-Y |
[28] |
Orita M, Suzuki Y, Sekiya T, Hayashi K . Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics, 1989,5:874-879.
doi: 10.1016/0888-7543(89)90129-8 |
[29] |
Drenkard E, Richter B G, Rozen S, Stutius L M, Angell N A, Mindrinos M, Cho R J, Oefner P J, Davis R W, Ausubel F M . A simple procedure for the analysis of single nucleotide polymorphisms facilitates map-based cloning in Arabidopsis. Plant Physiol, 2000,124:1483-1492.
doi: 10.1104/pp.124.4.1483 |
[30] |
Schmalzing D, Belenky A, Novotny M A, Koutny L, Salas-Solano O, EI-Difrawy S, Adourian A, Matsudaira P, Ehrlich D . Microchip electrophoresis: a method for high-speed SNP detection. Nucl Acids Res, 2000,28:e43.
doi: 10.1093/nar/28.9.e43 |
[31] |
Semagn K, Babu R, Hearne S, Olsen M . Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed, 2014,33:1-14.
doi: 10.1007/s11032-013-9917-x |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[3] | 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564. |
[4] | 郑向华, 叶俊华, 程朝平, 魏兴华, 叶新福, 杨窑龙. 利用SNP标记进行水稻品种籼粳鉴定[J]. 作物学报, 2022, 48(2): 342-352. |
[5] | 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85. |
[6] | 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214. |
[7] | 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137. |
[8] | 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659. |
[9] | 王蕊, 施龙建, 田红丽, 易红梅, 杨扬, 葛建镕, 范亚明, 任洁, 王璐, 陆大雷, 赵久然, 王凤格. 玉米杂交种纯度鉴定SNP核心引物的确定及高通量检测方案的建立[J]. 作物学报, 2021, 47(4): 770-779. |
[10] | 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404. |
[11] | 谢磊, 任毅, 张新忠, 王继庆, 张志辉, 石书兵, 耿洪伟. 小麦穗发芽性状的全基因组关联分析[J]. 作物学报, 2021, 47(10): 1891-1902. |
[12] | 刘畅, 孟云, 刘金栋, 王雅美, Guoyou Ye. 结合QTL-seq和连锁分析发掘水稻中胚轴伸长相关QTL[J]. 作物学报, 2021, 47(10): 2036-2044. |
[13] | 孙倩, 邹枚伶, 张辰笈, 江思容, Eder Jorge de Oliveira, 张圣奎, 夏志强, 王文泉, 李有志. 基于SNP和InDel标记的巴西木薯遗传多样性与群体遗传结构分析[J]. 作物学报, 2021, 47(1): 42-49. |
[14] | 陶爱芬,游梓翊,徐建堂,林荔辉,张立武,祁建民,方平平. 基于黄麻转录组序列SNP位点的CAPS标记开发与验证[J]. 作物学报, 2020, 46(7): 987-996. |
[15] | 田红丽, 杨扬, 王璐, 王蕊, 易红梅, 许理文, 张云龙, 葛建镕, 王凤格, 赵久然. 兼容型maizeSNP384标记筛选与玉米杂交种DNA指纹图谱构建[J]. 作物学报, 2020, 46(7): 1006-1015. |
|