欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (5): 656-661.doi: 10.3724/SP.J.1006.2019.83058

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米穗发芽突变体vp-like8的遗传分析及突变基因鉴定

王瑞1,陈阳松1,孙明昊1,2,张秀艳3,杜依聪1,郑军1,*()   

  1. 1 中国农业科学院作物科学研究所, 北京 100081
    2 吉林农业大学农学院, 吉林长春 130118
    3 中国农业大学生物学院, 北京 100193
  • 收稿日期:2018-08-15 接受日期:2019-01-12 出版日期:2019-05-12 网络出版日期:2019-02-22
  • 通讯作者: 郑军
  • 基金资助:
    本研究由国家重点研发计划项目(2016YFD0101002);中国农业科学院创新工程专项经费资助

Genetic analysis and causal gene identification of maize viviparous mutant vp-like8

Rui WANG1,Yang-Song CHEN1,Ming-Hao SUN1,2,Xiu-Yan ZHANG3,Yi-Cong DU1,Jun ZHENG1,*()   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2 College of Agronomy, Jilin Agricultural University, Changchun 130118, Jilin, China
    3 School of Life Science, China Agricultural University, Beijing 100193, China
  • Received:2018-08-15 Accepted:2019-01-12 Published:2019-05-12 Published online:2019-02-22
  • Contact: Jun ZHENG
  • Supported by:
    This work was supported by the National Key Research and Development Program of China(2016YFD0101002);the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences.

摘要:

玉米突变体vp-like8具有明显的穗发芽性状且能稳定遗传, 遗传分析表明该突变性状受隐性单基因控制。用vp-like8与自交系郑58杂交构建F2遗传定位群体, 利用BSR-Seq方法, 将基因初定在玉米第3染色体160.4 Mb~165.6 Mb区间内。参考玉米基因组信息, 发现已报道的穗发芽基因Vp1位于此定位区间内。分别利用vp1vp-like8的杂合突变体进行等位测验, 发现杂交后代中正常与穗发芽籽粒符合3∶1遗传分离比。经序列分析, 发现vp-like8突变体中Vp1基因在第2内含子有343 bp碱基的缺失, 且第3内含子有222 bp重复序列的插入, 而已报道的vp1突变体只在第2个内含子有343 bp碱基的缺失。通过实时定量PCR检测发现, 与正常籽粒相比, vp-like8Vp1突变籽粒中Vp1 基因的转录水平均明显降低。以上证据表明, vp-like8是一个新的Vp1基因等位突变体。

关键词: 玉米, 穗发芽, 突变体, Vp1, 基因定位

Abstract:

The maize mutant vp-like8 shows clear viviparous phenotype and stable inheritance, and genetic analysis showed that the mutant phenotype was controlled by a single recessive gene. Using an F2 segregation population derived from vp-like8 and inbred line Zheng 58, the causal gene was mapped to an interval from 160.4 Mb to 165.6 Mb on chromosome 3 by the BSR-Seq technology. According to the maize genomic database, a previously discovered viviparous gene Vp1 was identified to be in this mapping interval. The test crosses from vp1 and vp-like8 heterozygous plants showed a 3:1 segregation ratio between normal and viviparous kernels. The genomic sequence analysis revealed that vp-like8 mutant had a 343 bp deletion in the second intron and 222 bp insertion in the third intron of Vp1 gene, which is different from vp1 mutation of an only 343 bp deletion in the second intron of Vp1 gene. Further real time PCR analysis revealed that, compared with the normal kernels, the transcript level of Vp1 was significantly decreased both in vp-like8 and vp1 viviparous kernels. Taken together, these evidences suggest that vp-like8 is a new allele mutant of Vp1.

Key words: maize, viviparous, mutant, Vp1, gene mapping

表1

本研究所用的引物"

引物
Primer
正向序列
Forward sequence (5°-3°)
反向序列
Reverse sequence (5°-3°)
VP1-G-F1/R1 GCGAGACCTGAAAACACACA CATGGCGTTCTCTAGCATCA
VP1-G-F2/R2 CGCACTCCCAAGAGAACC ATAGGGTAAGAGCCCGTGGA
VP1-G-F3/R3 GTGGTCGTGAACAGCCAAC GCTCTGCTTCAGCACCTTCT
VP1-G-F4/R4 CATCGCTGTCGAGCAATAGA CTGTACCGCATGTTCCACAC
VP1-G-F5/R5 TAAAATCGGCCATGGATAGG TCTCTGGCCCAGTGGTTAGT
VP1-G-F6/R6 GCTGCTGTTTTCCTCGAATC GCACCTAGCTGCCAAACACT
VP1-G-F7/R7 AGTCCTCCGGATCTCTCGTT AAACGGTTGCGTAGATTTGG
VP1-G-F8/R8 CCAGTGCAATGTCAGTGCTT AATGGCCGAGAGATCAGGTA
VP1-CDS-F1/R1 AGAAGGTGCTGAAGCAGAGC AACGAACAAATTCCCCTGTG
Zm-GAPDH-F/R CCCTTCATCACCACGGACTAC AACCTTCTTGGCACCACCCT

图1

vp-like8突变体穗发芽表型 A: 授粉30 d 后突变体vp-like8杂合果穗上的穗发芽籽粒和正常籽粒; B: 授粉后60 d后突变体vp-like8杂合果穗上穗发芽籽粒和正常籽粒; C: 成熟的正常籽粒(WT)和穗发芽籽粒(vp); 标尺=1 cm。"

表2

vp-like8杂合突变体自交授粉后正常籽粒和穗发芽籽粒的分离情况"

年度
Year
地点
Location
植株基因型
Plant genotype
籽粒表型Kernel phenotype
正常籽粒
Normal
穗发芽籽粒
Viviparous
总数
Total
χ2
(3:1)
2014 海南Hainan vp-like8/+ 150 45 195 0.289
361 118 479 0.017
2016 北京Beijing vp-like8/+ 132 46 178 0.030
121 38 159 0.052

图2

利用BSR-Seq方法对vp-like8突变体基因的初定位"

图3

利用杂合体对vp-like8和vp1进行等位测验 A: 以vp1/+杂合突变体混粉杂交vp-like8的果穗上出现穗发芽籽粒。B: 以vp-like8/+杂合突变体混粉杂交vp1的果穗上出现穗发芽籽粒。"

图4

Vp1基因结构示意图及突变体的突变位置"

表3

vp-like8与vp1突变体等位测验"

父母本基因型
Parental genotype
籽粒表型 Kernel phenotype
正常籽粒
Normal
穗发芽籽粒
Viviparous
总数
Total
χ2
(3:1)
vp-like8/+ × vp1 /+ 208 72 280 0.042
vp1 /+ × vp-like8/+ 158 48 206 0.233

图5

实时定量PCR检测Vp1基因分别在vp-like8、vp1突变体的正常(normal)和穗发芽(vp)籽粒中的表达量"

[1] Eyster W H . A primitive sporophyte in maize. Am J Bot, 1924,11:7-14.
doi: 10.1002/j.1537-2197.1924.tb05754.x
[2] Eyster W H . A second factor for primitive sporophyte in maize. Am Nat, 1924,58:436-439.
doi: 10.1086/279994
[3] Lindstrom E W . Heritable characters of maize: XIII. Endosperm defects-sweet defective and flint-defective. J Hered, 1923,14:127-135.
doi: 10.1093/oxfordjournals.jhered.a102292
[4] Mangelsdorf P C . The inheritance of defective seeds in maize. J Hered, 1923,14:119-125.
doi: 10.1093/oxfordjournals.jhered.a102290
[5] Mangelsdorf P C . The genetics and morphology of some endosperm characters in maize. Conn Agric Exp Stn Bull, 1926,279:513-614.
[6] Robertson D S . The genetics of vivipary in maize. Genetics, 1955,40:745.
[7] McCarty D R, Hattori T, Carson C B, Vasil V, Lazar M, Vasil I K . The Viviparous1 developmental gene of maize encodes a novel transcriptional activator. Cell, 1991,66:895-905.
[8] Suzuki M, Kao C Y, Cocciolone S , McCarty D R . Maize VP1 complements Arabidopsis abi3 and confers a novel ABA/auxin interaction in roots. Plant J, 2001,28:409-418.
[9] Suzuki M, Latshaw S, Sato Y, Settles A M, Koch K E, Hannah L C , McCarty D R . The maize Viviparous8 locus, encoding a putative ALTERED MERISTEM PROGRAM1-like peptidase, regulates abscisic acid accumulation and coordinates embryo and endosperm development. Plant Physiol, 2008,146:1193-1206.
[10] Porch T G, Tseung C W, Schmelz E A, Settles A M . The maize Viviparous10/Viviparous13 locus encodes the Cnx1 gene required for molybdenum cofactor biosynthesis. Plant J, 2006,45:250-263.
[11] Schwartz S H, Tan B C, Gage D A, Zeevaart J A , McCarty D R . Specific oxidative cleavage of carotenoids by VP14 of maize. Science, 1997,276:1872-1874.
[12] Suzuki M, Mark Settles A, Tseung C W, Li Q B, Latshaw S, Wu S , McCarty D R . The maize viviparous15 locus encodes the molybdopterin synthase small subunit. Plant J, 2006,45:264-274.
[13] Hable W E, Oishi K K, Schumaker K S . Viviparous-5 encodes phytoenedesaturase, an enzyme essential for abscisic acid (ABA) accumulation and seed development in maize. Mol General Genet, 1998,257:167-176.
[14] Singh M, Lewis P E, Hardeman K, Bai L, Rose J K, Mazourek M, Brutnell T P . Activator mutagenesis of the pink scutellum1/viviparous7 locus of maize. Plant Cell, 2003,15:874-884.
[15] Maluf M P, Saab I N, Wurtzel E T, Mark Settles A . The viviparous12 maize mutant is deficient in abscisic acid, carotenoids, and chlorophyll synthesis. J Exp Bot, 1997,48:1259-1268.
[16] Mayfield S P, Nelson T, Taylor W C, Malkin R . Carotenoid synthesis and pleiotropic effects in carotenoid-deficient seedlings of maize. Planta, 1986,169:23-32.
doi: 10.1007/BF01369771
[17] Treharne K J, Mercer E I, Goodwin T W . Carotenoid biosynthesis in some maize mutants. Phytochemistry, 1966,5:581-587.
doi: 10.1016/S0031-9422(00)83636-5
[18] Qi W, Zhu J, Wu Q, Wang Q, Li X, Yao D, Jin Y, Wang G, Wang G, Song R . Maize rea1 mutant stimulates ribosome use efficiency and triggers distinct transcriptional and translational responses. Plant Physiol, 2016,170:971-988.
doi: 10.1104/pp.15.01722
[19] McCarty D R, Carson C B, Stinard P S, Robertson D S . Molecular analysis of viviparous-1: an abscisic acid-insensitive mutant of maize. Plant Cell, 1989,1:523-532.
[20] Hattori T, Vasil V, Rosenkrans L, Cocciolone S M, Vasil I K, Quatrano R S , McCarty D R . The Viviparous1 gene and abscisic acid activate the C1 regulatory gene for anthocyanin biosynthesis during seed maturation in maize. Gene Dev, 1992,6:609-618.
[21] Carson C B, Hattori T, Rosenkrans L, Vasil V, Vasil I K, Peterson P A , McCarty D R . The quiescent/colorless alleles of viviparous1 show that the conserved B3 domain of VP1 is not essential for ABA-regulated gene expression in the seed. Plant J, 1997,12:1231-1240.
[22] Liu S, Yeh C T, Tang H M, Nettleton D, Schnable P S . Gene mapping via bulked segregant RNA-Seq (BSR-Seq). PLoS One, 2012,7:e36406.
doi: 10.1371/journal.pone.0036406
[23] 王瑞, 张秀艳, 陈阳松, 杜依聪, 汤继华, 王国英, 郑军 . 一个新的玉米Vp15基因等位突变体的遗传分析与分子鉴定. 作物学报, 2018,44:370-376.
Wang R, Zhang X Y, Chen Y S, Du Y C, Tang J H, Wang G Y, Zheng J . Genetic analysis and molecular characterization of a new allelic mutant of vp15 gene in maize. Acta Agron Sin, 2018,44:370-376 (in Chinese with English abstract).
[24] 王关林, 方宏筠 . 植物基因工程(第2版). 北京: 科学出版社, 2002. pp 742-744.
Wang G L , Fang H J . Plant Genetic Engineering, 2nd edn. Beijing: Science Press, 2002. pp 742-744(in Chinese).
[25] Li C, Ni P, Francki M, Hunter A, Zhang Y, Schibeci D, Li H, Tarr A, Wang J, Cakir M, Yu J, Bellgard M, Lance R, Appels R . Genes controlling seed dormancy and pre-harvest sprouting in a rice-wheat-barley comparison. Funct Integr Genomic, 2004,4:84-93.
doi: 10.1007/s10142-004-0104-3
[26] Rohde A, Van Montagu M, Boerjan W . The ABSCISIC ACID- INSENSITIVE 3 (ABI3) gene is expressed during vegetative quiescence processes in Arabidopsis. Plant Cell Environ, 1999,22:261-270.
[27] Hoecker U, Vasil I K , McCarty D R . Integrated control of seed maturation and germination programs by activator and repressor functions of Viviparous 1 of maize. Gene Dev, 1995,9:2459-2469.
[28] Rohde A, De Rycke R, Beeckman T, Engler G, Van Montagu M, Boerjan W . ABI3 affects plastid differentiation in dark-grown Arabidopsis seedlings. Plant Cell, 2000,12:35-52.
[29] Rohde A, Kurup S, Holdsworth M . ABI3 emerges from the seed. Trends Plant Sci, 2000,5:418-419.
doi: 10.1016/S1360-1385(00)01736-2
[30] Rohde A, Prinsen E, De Rycke R, Engler G, Van Montagu M, Boerjan W . PtABI3 impinges on the growth and differentiation of embryonic leaves during bud set in poplar. Plant Cell, 2002,14:1885-1901.
doi: 10.1105/tpc.003186
[31] Brady S M, Sarkar S F, Bonetta D , McCourt P . The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. Plant J, 2003,34:67-75.
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[4] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[8] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[9] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[10] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[11] 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885.
[12] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[13] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[14] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[15] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!