欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (6): 856-871.doi: 10.3724/SP.J.1006.2019.83059

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

8种水旱环境下2个玉米群体穗部性状QTL间的上位性及环境互作效应分析

赵小强,任斌,彭云玲(),徐明霞,方鹏,庄泽龙,张金文,曾文静,高巧红,丁永福,陈奋奇   

  1. 甘肃省干旱生境作物学重点实验室 / 甘肃农业大学农学院, 甘肃兰州 730070
  • 收稿日期:2018-08-16 接受日期:2018-12-24 出版日期:2019-06-12 网络出版日期:2019-06-12
  • 通讯作者: 赵小强,任斌,彭云玲
  • 作者简介:赵小强, E-mail: zhaoxq3324@163.com
  • 基金资助:
    本研究由国家重点研发计划项目(2018YFD0100203-4);中国科学院“西部之光”项目(20180504);甘肃省重点研发计划(18YF1NA071);甘肃省自然科学基金项目(18JR3RA189);甘肃省重大科技专项(17ZD2NA016)

Epistatic and QTL × environment interaction effects for ear related traits in two maize (Zea mays) populations under eight watering environments

Xiao-Qiang ZHAO,Bin REN,Yun-Ling PENG(),Ming-Xia XU,Peng FANG,Ze-Long ZHUANG,Jin-Wen ZHANG,Wen-Jing ZENG,Qiao-Hong GAO,Yong-Fu DING,Fen-Qi CHEN   

  1. Gansu Provincial Key Laboratory of Aridland Crop Science / College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2018-08-16 Accepted:2018-12-24 Published:2019-06-12 Published online:2019-06-12
  • Contact: Xiao-Qiang ZHAO,Bin REN,Yun-Ling PENG
  • Supported by:
    This study was supported by the National Key R&D Project(2018YFD0100203-4);Chinese Academy of Sciences “Light of West China” Program(20180504);Lanzhou Sci & Technol Project (2018-1-103), the Key R&D Program of Gansu, China(18YF1NA071);the National Science Foundation of Gansu Province(18JR3RA189);the Key Science and Technology Projects in Gansu Province(17ZD2NA016)

摘要:

深入剖析干旱胁迫条件下玉米穗部性状的遗传机制可为玉米抗旱高产分子育种提供参考依据。以大穗型旱敏感自交系TS141为共同亲本, 分别与小穗型强抗旱自交系廊黄和昌7-2杂交, 构建了含有202个(LTPOP)和218个(CTPOP)家系的F2:3群体, 在8种水旱环境下进行单穗重、穗轴重、穗粒重、百粒重、出籽率及穗长等6个穗部性状的表型鉴定, 并采用复合区间作图法(CIM)和基于混合线性模型的复合区间作图法(MCIM)对其进行单环境和多环境联合数量性状位点(QTL)分析。结果表明, 采用CIM法, 单环境下在2套F2:3群体间检测到62个穗部性状QTL, 其中干旱胁迫环境下检测到38个QTL, 进一步在2套F2:3群体多个干旱胁迫环境下检测到10个稳定表达的QTL (sQTL), 分别位于Bin 1.01-1.03、Bin 1.03-1.04、Bin 1.05、Bin 1.07、Bin 1.07-1.08、Bin 2.04、Bin 4.08、Bin 5.06-5.07、Bin 6.05和Bin 9.04-9.06。采用MCIM法, 联合分析定位到54个穗部性状联合QTL, 其中24个表现显著的QTL与环境互作(QTL×E), 17对参与了显著的加性与加性/显性(AA/AD)上位性互作, 其表型贡献率较低。这些研究结果可为系统地剖析玉米穗部性状的分子遗传机制提供理论依据; 且这2套F2:3群体多个环境下检测到的sQTL可作为穗部性状改良的重要候选染色体区段, 用于图位克隆或抗旱高产分子育种, 但要注重环境及上位性互作效应的影响。

关键词: 玉米, 干旱, 穗部性状, QTL, QTL与环境互作, 上位性

Abstract:

Exploring genetic mechanisms of ear related traits in maize (Zea mays) under drought stress is important in maize molecular breeding for drought tolerance and high yield. Two F2:3 populations, namely 202 F2:3 families (LTPOP) and 218 F2:3 families (CTPOP) derived from the common male parent TS141 with drought-sensitive and larger ear and female parents Langhuang/Chang 7-2 with higher drought tolerance and small ear were used to investigate ear weight (EW), cob weight (CW), grain weight (GW), 100-kernel weight (KW), kernel ratio (KR), and ear length (EL) under eight watering environments, and then to analyze quantitative trait locus (QTL) in a single environment by composite interval mapping (CIM) and in the eight environments by mixed linear model based on composite interval mapping (MCIM). Sixty-two QTLs for ear related traits were detected in two F2:3 populations in a single environment by CIM, among than 38 QTLs were mapped under water-stressed environments, and further analysis showed that ten stable QTLs (sQTLs) were simultaneously identified in two F2:3 populations under multiple water-stressed environments, these sQTLs were located in Bin 1.01-1.03, Bin 1.03-1.04, Bin 1.05, Bin 1.07, Bin 1.07-1.08, Bin 2.04, Bin 4.08, Bin 5.06-5.07, Bin 6.05, and Bin 9.04-9.06. Fifty-four joint QTLs for ear related traits were identified in the eight environments by joint analysis with MCIM, among than 24 had significant QTL by environment interaction (QTL×E), and 17 significant epistatic interactions with additive by additive/dominance (AA/AD) effects, with less phenotypic variation. These results lay a foundation for systematically revealing molecular genetic mechanism of ear related traits, these sQTLs detected in two F2:3 populations under multiple environments are important genomic regions that could be used in positional cloning and molecular breeding for drought tolerance and high yield, however, more attention should be paid to the effects of environment or epistatic interaction.

Key words: maize (Zea mays), drought, ear correlative traits, QTL, QTL by environment interaction (QTL×E), epistasis

图1

4个试验点(武威、张掖、古浪和景泰)气象数据"

表1

8种水分环境下F2:3群体(LTPOP/CTPOP) 6个穗部性状的表型值"

性状Trait 环境
Env.
双亲
Parents
F1杂交种
F1 hybrid
LTPOP群体
LTPOP population
廊黄
Langhuang
TS141 F1LT 均值
Mean
变幅
Range
变异系数
CV (%)
偏度Skewness 峰度Kurtosis
EW E1 71.33±6.89 111.30±9.72 184.27±7.03 149.81±43.25 52.85-285.91 28.87 0.315 0.313
(g) E2 66.58±7.95 100.67±8.44 163.51±6.79 133.19±51.83 43.27-265.43 38.92 0.453 -0.327
E3 88.29±10.43 128.85±6.45 197.80±6.74 163.19±41.49 70.21-281.87 25.42 0.086 -0.338
E4 84.14±6.77 110.56±8.01 169.14±7.83 152.76±51.41 52.27-276.94 33.65 0.382 -0.577
CW E1 12.53±1.65 29.90±2.15 33.71±2.81 27.65±9.43 9.47-53.31 34.11 0.326 -0.490
(g) E2 9.85±1.23 21.81±1.89 26.58±2.44 25.11±8.23 7.91-50.34 32.77 0.230 -0.051
E3 15.75±2.05 33.78±3.13 37.83±3.15 30.79±10.85 10.87-60.03 35.22 0.636 -0.141
E4 11.66±2.78 23.04±2.61 31.09±3.07 28.17±9.56 8.50-51.23 33.92 0.294 -0.410
GW E1 59.81±4.70 82.40±4.82 150.56±5.11 123.16±33.98 65.07-208.15 27.59 0.815 0.206
(g) E2 56.73±3.96 71.92±3.17 136.93±5.09 108.22±24.72 61.14-186.27 22.84 -0.192 -0.887
E3 64.54±4.51 85.07±4.66 159.97±4.85 132.46±25.05 68.94-207.92 18.91 -0.620 0.753
E4 60.48±5.03 73.52±4.49 138.05±4.23 125.01±23.36 65.31-194.58 18.68 0.904 0.727
KW E1 19.70±2.51 25.15±1.67 40.06±3.40 27.05±7.52 18.40-50.15 27.80 0.853 0.728
(g) E2 15.80±1.38 20.05±1.41 33.95±4.18 25.65±6.39 12.00-45.50 24.91 0.308 -0.376
E3 20.55±1.62 32.70±1.72 43.97±3.79 33.80±7.20 13.75-60.25 21.30 0.617 -0.407
E4 25.70±1.70 24.80±2.03 31.20±3.73 25.90±6.45 13.35-45.50 24.90 0.467 -0.339
性状Trait 环境
Env.
双亲
Parents
F1杂交种
F1 hybrid
LTPOP群体
LTPOP population
廊黄
Langhuang
TS141 F1LT 均值
Mean
变幅
Range
变异系数
CV (%)
偏度Skewness 峰度Kurtosis
KR E1 83.43±1.84 77.34±1.67 83.93±2.01 81.59±4.94 70.63-91.08 6.05 0.711 -0.095
E2 81.02±1.35 73.08±1.55 82.15±1.84 78.80±5.79 65.97-88.84 7.35 -0.093 0.268
E3 85.14±1.42 79.62±1.73 85.92±1.85 83.01±5.05 71.89-92.51 6.08 -0.216 0.670
E4 82.26±1.61 73.98±1.89 83.93±1.79 80.56±5.93 68.05-89.93 7.36 -0.326 -0.431
EL E1 9.23±1.68 15.33±1.74 20.17±1.40 15.74±2.72 9.18-22.78 17.29 -0.069 0.000
(cm) E2 8.05±1.21 13.10±1.46 18.83±2.05 14.82±3.08 8.20-21.30 20.74 -0.203 -0.855
E3 9.55±2.02 15.62±1.31 20.84±1.87 15.81±2.92 9.10-23.20 18.46 0.073 -0.089
E4 8.72±1.04 12.60±1.76 17.68±1.92 15.07±2.52 8.21-19.80 16.69 -0.497 0.047
双亲
Parents
F1杂交种
F1 hybrid
CTPOP群体
CTPOP population
昌7-2
Chang 7-2
TS141 F1CT 均值
Mean
变幅
Range
变异系数
CV (%)
偏度Skewness 峰度Kurtosis
EW E5 63.68±4.57 107.64±7.99 235.32±7.15 121.00±39.89 27.07-224.56 32.97 0.528 0.041
(g) E6 59.05±6.22 96.47±6.80 215.76±6.98 111.20±38.62 22.34-211.91 34.73 0.596 0.152
E7 54.79±3.16 101.26±5.43 228.43±7.68 105.30±38.29 13.20-200.00 36.37 -0.033 -0.191
E8 50.00±2.69 90.43±5.90 205.37±8.03 90.03±41.93 12.07-198.34 46.26 0.238 -0.220
CW E5 6.86±3.30 21.41±3.88 30.28±1.89 17.51±6.71 4.24-41.21 38.33 0.577 0.619
(g) E6 5.90±5.28 17.68±4.72 26.77±2.01 15.81±5.84 4.16-35.99 36.94 0.701 1.037
E7 6.22±2.19 18.64±3.61 28.95±1.68 16.81±5.74 5.09-32.56 34.14 0.258 -0.119
E8 5.03±3.00 15.11±2.45 23.72±1.74 14.49±6.12 4.03-32.08 42.26 0.425 -0.368
GW E5 56.82±4.01 86.25±3.77 205.07±7.56 104.49±33.19 25.17-184.38 31.76 -0.911 0.150
(g) E6 52.12±3.65 73.79±4.09 189.99±6.70 95.39±28.05 19.78-180.21 29.41 0.228 1.006
E7 49.57±4.22 82.63±4.73 199.48±5.79 89.87±30.82 10.92-174.89 34.29 0.858 0.417
E8 43.97±3.99 70.32±4.36 180.55±6.04 77.54±31.21 9.95-173.24 40.25 0.325 0.271
KW E5 15.15±1.24 23.40±2.14 34.77±2.13 25.20±6.27 6.15-46.14 24.88 0.275 0.761
(g) E6 13.95±1.90 20.10±1.00 29.94±1.78 22.00±7.50 5.05-45.60 34.09 0.435 1.069
E7 14.05±1.05 21.21±1.12 31.26±1.69 22.80±6.29 8.40-42.71 27.58 0.483 0.407
E8 10.80±1.76 14.97±1.33 28.78±1.55 21.60±5.37 6.15-44.43 24.86 0.438 0.696
KR E5 87.22±2.16 80.19±2.32 88.36±1.69 85.50±4.89 73.47-90.80 5.72 0.916 0.188
E6 85.81±2.02 73.73±1.85 86.03±1.57 83.17±5.63 65.13-87.96 6.77 -0.470 0.735
E7 84.64±1.90 79.42±2.13 84.75±1.96 84.04±5.30 71.90-91.83 6.31 0.438 -0.307
E8 80.09±2.11 70.68±2.26 80.77±2.01 79.99±6.37 62.38-90.48 7.96 0.691 -0.740
EL E5 8.15±2.36 13.15±1.77 21.86±2.04 13.55±2.50 7.30-21.20 18.47 0.522 0.903
(cm) E6 7.02±2.69 10.44±3.10 17.99±1.21 12.49±2.32 6.80-20.60 18.59 0.164 0.455
E7 7.08±1.57 12.53±2.85 19.78±11.36 12.91±2.14 7.30-20.30 16.57 0.357 0.723
E8 6.00±2.31 10.48±2.08 16.04±1.02 12.01±2.59 5.70-18.30 21.52 -0.283 -0.218

图2

6个穗部性状RC和杂种优势分析缩写见表1。Abbreviations correspond with these given in Table 1."

Table 2

Complex variance for six ear related traits in F2:3 populations (LTpop/CTpop)under eight watering envrionments"

Table 2

Phenoty and genetic correlation analysis among six ear relaits in F2:3 populations (LTpop/CTpop)"

图3

采用CIM和MCIM法不同水分环境下F2:3群体(LTpop/CTpop)6个穗部性状QTL在染色体上的分布 "

表4

多环境下采用MCIM法对F2:3群体(LTPOP/CTPOP) 6个穗部性状联合QTL及QTL×E分析"

性状Trait QTL Chr. QTL位置 QTL position A AE1/
AE5
AE2/
AE6
AE3/
AE7
AE4/
AE8
h2A
(%)
h2AE
(%)
cM Mb 标记区间
Marker interval
LTPOP群体 LTPOP population
EW qEW-Ch.1-2 1 60.7 0.05 umc2025-umc1395 -2.07 12.56
qEW-J2-1 2 89.2 4.40 bnlg1520-umc1736 -1.55 -0.81 -0.95 9.43 7.08
qEW-Ch.4-1 4 183.6 46.16 umc2041-umc2287 -0.98 7.18
qEW-Ch.9-1 9 54.4 16.69 umc1120-umc2134 -1.70 6.33
qEW-J10-1 10 2.7 0.26 umc1319-bnlg1451 1.41 0.66 0.89 12.95 6.59
CW qCW-Ch.1-1 1 35.8 22.79 umc2224-bnlg1484 1.09 0.86 10.20 8.12
qCW-Ch.2-1 2 23.0 2.71 umc1555-umc1024 0.30 4.98
qCW-J2-1 2 87.5 4.40 bnlg1520-umc1736 -1.37 -0.79 -0.65 9.03 6.84
qCW-Ch.4-1 4 179.9 46.16 umc2041-umc2287 0.24 6.16
qCW-Ch.9-1 9 67.3 23.41 umc1120-umc2346 -1.58 8.54
GW qGW-J1-1 1 114.2 5.03 phi308707-umc1847 -1.20 -0.64 -0.37 0.45 8.14 5.01
qGW-J2-1 2 10.5 0.39 umc2363-umc2403 -0.53 4.85
qGW-J2-2 2 101.8 0.24 bnlg1520-umc1736 -1.55 -0.86 -0.40 -0.71 9.31 6.86
qGW-Ch.4-1 4 181.9 1.32 umc2041-umc2287 -1.31 8.32
qGW-Ch.8-1 8 44.2 0.01 bnlg1863-umc2075 -0.35 -0.26 -0.17 2.79 1.24
KW qKW-Ch.1-2 1 114.2 5.03 phi308707-umc1847 -1.06 -0.63 -0.20 -0.48 8.02 2.87
qKW-Ch.4-1 4 181.0 4.16 umc2041-umc2287 -1.28 8.17
qKW-J6-1 6 94.9 20.76 bnlg2191-mmc0523 0.72 5.48
qKW-Ch.6-1 6 119.7 11.12 umc2040-bnlg1174a 0.41 3.56
性状Trait QTL Chr. QTL位置 QTL position A AE1/
AE5
AE2/
AE6
AE3/
AE7
AE4/
AE8
h2A
(%)
h2AE
(%)
cM Mb 标记区间
Marker interval
KR qKR-Ch.1-1 1 40.7 1.56 bnlg1484-umc1917 1.11 11.69
qKR-J1-1 1 95.4 2.30 bnlg1025-mmc0041 0.60 0.37 5.30 2.73
qKR-Ch.6-1 6 119.8 0.03 umc2040-bnlg1174a 0.47 3.51
qKR-Ch.7-1 7 110.5 1.01 umc1708-umc1768 0.65 5.37
qKR-J8-1 8 88.3 0.54 umc2356-umc1607 0.84 0.26 0.43 -0.31 8.14 2.20
EL qEL-Ch.9-1 9 66.5 23.41 umc1120-umc2346 0.64 5.36
qEL-Ch.10-1 10 50.1 2.85 umc1345-umc2016 0.82 6.49
CTPOP群体 CTPOP population
EW qEW-Ch.1-1 1 138.4 17.57 bnlg1025-mmc0041 -0.90 5.06
qEW-J2-1 2 124.3 4.40 bnlg1520-umc1736 -1.76 -0.88 -0.74 10.93 6.00
qEW-Ch.5-1 5 236.0 2.96 umc2216-umc1072 1.03 4.71
qEW-Ch.6-1 6 81.3 22.97 mmc0523-umc2141 -0.77 4.84
qEW-J8-1 8 8.8 4.96 umc1327-bnlg1194 1.19 0.95 4.90 4.63
qEW-J10-1 10 4.9 0.26 umc1319-bnlg1451 1.01 0.81 0.58 0.66 10.25 7.11
CW qCW-Ch.1-1 1 27.1 22.79 umc2224-bnlg1484 1.10 0.73 0.58 6.49 4.57
qCW-J1-1 1 159.0 19.78 phi308707-umc2289 1.13 -0.79 -0.43 0.68 5.40 4.34
qCW-J5-1 5 113.8 15.76 umc1226-umc1815 -0.88 -0.54 4.92 3.59
qCW-Ch.8-1 8 107.0 32.89 umc2218-umc2356 -1.20 7.93
qCW-Ch.9-1 9 51.8 16.69 umc1120-umc2134 -1.82 9.29
qCW-J10-1 10 3.3 0.26 umc1319-bnlg1451 1.07 0.55 6.05 4.18
GW qGW-J1-1 1 154.9 17.51 mmc0041-phi308707 -2.03 -0.84 -0.66 -0.41 -0.68 11.07 5.50
qGW-J2-1 2 38.6 2.01 umc2363-umc1024 -0.88 7.31
qGW-J2-2 2 127.1 0.24 bnlg1520-umc1736 -1.63 -0.89 -0.41 -0.64 -0.50 9.95 4.19
qGW-Ch.4-1 4 120.3 0.66 umc2041-umc2188 -1.77 10.14
qGW-J6-1 6 97.4 0.03 umc2040-bnlg1174a -1.05 8.96
qGW-J8-1 8 40.7 0.01 bnlg1863-umc2075 -0.84 -0.36 -0.52 7.20 4.47
KW qCW-J1-1 1 155.0 17.51 mmc0041-phi308707 -0.78 -0.58 7.10 6.03
qKW-Ch.4-1 4 `120.5 0.66 umc2041-umc2188 -1.02 8.95
qKW-Ch.6-1 6 81.0 22.97 mmc0523-umc2141 0.44 4.06
KR qKR-J1-1 1 139.3 2.30 bnlg1025-mmc0041 0.51 0.26 0.39 4.15 2.93
qKR-J6-1 6 88.1 0.17 umc2141-umc2040 0.58 4.20
qKR-J7-1 7 118.0 1.01 umc1708-umc1768 0.73 6.12
qKR-Ch.8-1 8 114.9 1.96 umc2356-phi233376 0.62 0.37 0.18 5.04 2.11
EL qEL-J1-1 1 154.6 17.51 mmc0041-phi308707 -0.79 -0.66 7.04 6.18
qEL-Ch.4-1 4 120.3 0.66 umc2041-umc2188 -1.32 9.16
qEL-Ch.10-1 10 142.6 0.75 bnlg1839-umc1249 0.36 3.41

Table 2

Epistatic interactions among QTLS for six ear related traits in F2:3 population (LTpop/CTpop)under multiple environments"

[1] 王崇桃, 李少昆 . 玉米生产限制因素评估与技术优先序. 中国农业科学, 2010,43:1136-1146.
Wang C T, Li S K . Assessment of limiting factors and techniques prioritization for maize production in China. Sci Agric Sin, 2010,43:1136-1146 (in Chinese with English abstract).
[2] Zhao X Q, Peng Y L, Zhang J W, Fang P, Wu B Y . Identification of QTLs and meta-QTLs for seven agronomic traits in multiple maize populations under well-watered and water-stressed conditions. Crop Sci, 2018,58:507-520.
[3] 谭巍巍, 李永祥, 王阳, 刘成, 刘志斋, 彭勃, 王迪, 张岩, 孙宝成, 石云素, 宋燕春, 杨德光, 王天宇, 黎裕 . 在干旱和正常水分条件下玉米穗部性状QTL分析. 作物学报, 2011,37:235-248.
Tan W W, Li Y X, Wang Y, Liu C, Liu Z Z, Peng B, Wang D, Zhang Y, Sun B C, Shi Y S, Song Y C, Yang D G, Wang T Y, Li Y . QTL mapping of ear traits of maize under different water regimes. Acta Agron Sin, 2011,37:235-248 (in Chinese with English abstract).
[4] Nikolic A, Andjelkovic A, Dodig D, Ignjatovic-Micic D . Quantitative trait loci for yield and morphological traits in maize under drought stress. Genetika-Belgrade, 2011,43:263-276.
[5] Almeida G D, Nair S, Borém A, Cairns J, Trachsel S, Ribaut J M, Bänziger M, Prasanna B M, Crossa J, Babu R . Molecular mapping across three populations reveals a QTL hotspot region on chromosome 3 for secondary traits associated with drought tolerance in tropical maize. Mol Breed, 2014,34:701-715.
doi: 10.1007/s11032-014-0068-5 pmid: 4092235
[6] Guo J F, Su G Q, Zhang J P, Wang G Y . Genetic analysis and QTL mapping of maize yield and associate agronomic traits under semi-arid land condition. Afr J Biotech, 2008,7:1829-1838.
[7] Lu G H, Tang J H, Yan J B, Ma X Q, Li J S, Chen S J, Ma J C, Liu Z X, Zhang Y R, Dai J R . Quantitative trait loci mapping of maize yield and its components under different water treatments at flowering time. J Integr Plant Biol, 2006,48:1233-1243.
doi: 10.1111/j.1744-7909.2006.00289.x
[8] Sabadin P K, de-Souza C L, de-Souza A P, Franco G A A . QTL mapping for yield components in a tropical maize population using microsatellite markers. Hereditas, 2008,145:194-203.
doi: 10.1111/j.0018-0661.2008.02065.x
[9] Calderón C I, Yandell B S, Doebley J F . Fine mapping of a QTL associated with kernel row number on chromosome 1 of maize. PLoS One, 2016,11:e0150276.
doi: 10.1371/journal.pone.0150276 pmid: 26930509
[10] Liu L, Du Y F, Shen X M, Li M F, Sun W, Huang J, Liu Z J, Tao Y S, Zheng Y L, Yan J B, Zhang Z X . KRN4 controls quantitative variation in maize kernel row number. PLoS Genet, 2015,11:e1005670.
[11] 李雪华, 李新海, 郝传芳, 田清震, 张世煌 . 干旱条件下玉米耐旱相关性状的QTL一致性图谱构建. 中国农业科学, 2005,38:882-890.
Li X H, Li X H, Hao C F, Tian Q Z, Zhang S H . Consensus map of the QTL relevant to drought tolerance of maize under drought conditions. Sci Agric Sin, 2005,38:882-890 (in Chinese with English abstract).
[12] 赵小强, 方鹏, 彭云玲, 高巧红, 曾文静, 任斌 . 基于两个相关群体的玉米6个穗部性状QTL定位. 农业生物技术学报, 2018,26:729-742.
Zhao X Q, Fang P, Peng Y L, Gao Q H, Zeng W J, Ren B . QTL mapping for six ear-related traits based on two maize ( Zea mays) related populations. J Agric Biotech, 2018,26:729-742 (in Chinese with English abstract).
[13] 赵小强, 方鹏, 彭云玲, 张金文, 曾文静, 任斌, 高巧红 . 基于两个相关群体的玉米7个主要农艺性状遗传分析和QTL定位. 草业学报, 2018,27(9):152-165.
Zhao X Q, Fang P, Peng Y L, Zhang J W, Zeng W J, Ren B, Gao Q H . Genetic analysis and QTL mapping for seven agronomic traits in maize ( Zea mays) using two connected populations. Acta Pratacult Sin 2018,27(9):152-165 (in Chinese with English abstract).
[14] 彭云玲, 赵小强, 任续伟, 李健英 . 开花期干旱胁迫对不同基因型玉米生理特性和产量的影响. 干旱地区农业研究, 2014,32(3):9-14.
Peng Y L, Zhao X Q, Ren X W, Li J Y . Genotypic differences in response of physiological characteristics and grain yield of maize inbred lines to drought stress at flowering stage. Agric Res Arid Areas, 2014,32(3):9-14 (in Chinese with English abstract).
[15] 彭云玲, 赵小强, 任续伟, 李健英 . 干旱胁迫对不同株型玉米大喇叭口期生长的影响. 中国沙漠, 2013,33:1064-1070.
Peng Y L, Zhao X Q, Ren X W, Li J Y . Effect of drought stress on growth of different plant type maize ( Zea mays) in the bell-mouthed period. J Desert Res, 2013,33:1064-1070 (in Chinese with English abstract).
[16] 赵小强, 彭云玲, 李建英, 任续伟 . 16份玉米自交系的耐盐性评价. 干旱地区农业研究, 2014,32(5):40-45.
Zhao X Q, Peng Y L, Li J Y, Ren X W . Comprehensive evaluation of salt tolerance in 16 maize inbred lines. Agric Res Arid Areas, 2014,32(5):40-45 (in Chinese with English abstract).
[17] 彭云玲, 赵小强, 闫慧萍, 武金欢 . 不同玉米自交系耐深播性评价及遗传多样性分析. 草业学报, 2016,25(7):73-86.
Peng Y L, Zhao X Q, Yan H P, Wu J H . Deep-sowing tolerance and genetic diversity of maize inbred lines. Acta Pratacult Sin, 2016,25(7):73-86 (in Chinese with English abstract).
[18] Zhao X Q, Peng Y L, Zhang J W, Fang P ,Wu B Y. Mapping QTLs and meta-QTLs for two inflorescence architecture traits in multiple maize populations under different watering environments.Mol Breed, 2017, 37: 91.
[19] Zhao X Q, Fang P, Zhang J W, Peng Y L . QTL mapping for six ear leaf architecture traits under water-stressed and well-watered conditions in maize (Zea mays L.). Plant Breed, 2018,137:60-72.
doi: 10.1111/pbr.12559
[20] 石云素, 黎裕, 王天宇 . 玉米种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006, pp 1-98.
Shi Y S, Li Y, Wang T Y. Descriptors and Data Standard for Maize (Zea mays). Beijing: China Agriculture Press, 2006, pp 1-98(in Chinese).
[21] Knapp S J, Stroup W W, Ross W M . Exact confidence intervals for heritability on a progeny mean basis. Crop Sci, 1985,25:192-194.
doi: 10.2135/cropsci1985.0011183X002500010046x
[22] Churchill G A, Doerge R W . Empirical threshold values for quantitative trait mapping. Genetics, 1994,138:963-971
doi: 10.1101/gad.8.21.2653 pmid: 7851788
[23] Stuber C W, Edwards M D, Wendel J . F1 molecular marker facilitated investigations of quantitative trait loci in maize: II. Factors influencing yield and its component traits. Crop Sci, 1987,27:639-648.
[24] McCouch S R, Cho Y G, Yano P E, Paul E, Blinstrub M, Morishima H, Kinoshita T . Report on QTL nomenclature. Rice Genet Newslett, 1997,14:11-13.
[25] Yang J, Zhu J, Williams R W . Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics, 2007,23:1527-1536.
doi: 10.1093/bioinformatics/btm143 pmid: 17459962
[26] Tuberosa R, Salvi S, Sanguineti M C, Landi P, Maccaferri M, Conti S . Mapping QTL regulating morpho-physiological traits and yields: case studies, shortcomings and perspectives in drought-stress maize. Ann Bot, 2002,89:941-963.
doi: 10.1093/aob/mcf134 pmid: 12102519
[27] 李叶蓓, 陶洪斌, 王若男, 张萍, 吴春江, 雷鸣, 张巽, 王璞 . 干旱对玉米穗发育及产量的影响. 中国生态农业学报, 2015,23:383-391.
Li Y B, Tao H B, Wang R N, Zhang P, Wu C J, Lei M, Zhang X, Wang P . Effect of drought on ear development and yield of maize. Chin J Eco-Agric, 2015,23:383-391 (in Chinese with English abstract).
[28] Robinson H F, Comstock R E, Harvey P H . Genotypic and phenotypic correlations in corn and their implications in selection. Agron J, 1951,43:282-287.
doi: 10.2134/agronj1951.00021962004300060007x
[29] 李忠南, 王越人, 邬生辉, 张淑萍, 李光发 . 玉米品种穗轴重和出籽率性状的相关及遗传关系研究. 玉米科学, 2012,20(5):33-39.
Li Z N, Wang Y R, Wu S H, Zhang S P, Li G F . Character analysis of maize variety and the genetic relationship. J Maize Sci, 2012,20(5):33-39 (in Chinese with English abstract).
[30] Messmer R, Fracheboud Y, Banziger M, Vargas M, Stamp P, Ribaut J M . Drought stress and tropical maize: QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits. Theor Appl Genet, 2009,119:913-930.
[31] 马金亮, 张春荣, 董华芳, 席章营, 夏宗良, 丁俊强, 吴建宇 . 玉米果穗出子率QTL定位及上位性分析. 河南农业大学学报, 2010,44:233-237.
Ma J L, Zhang C R, Dong H F, Xi Z Y, Xia Z L, Ding J Q, Wu J Y . QTL mapping and epistasis analysis for rate of kernel production in maize. J Henan Agric Univ, 2010,44:233-237 (in Chinese with English abstract).
[32] 张伟强, 库丽霞, 张君, 韩赞平, 陈彦惠 . 玉米出籽率、籽粒深度和百粒重的QTL分析. 作物学报, 2013,39:455-463.
Zhang W Q, Ku L X, Zhang J, Han Z P, Chen Y H . QTL analysis of kernel ratio, kernel depth, and 100-kernel weight in maize (Zea mays L.). Acta Agron Sin, 2013,39:455-463 (in Chinese with English abstract).
[33] Li J Z, Zhang Z W, Li Y L, Wang Q L, Zhou Y G . QTL consistency and meta-analysis for grain yield components in three generations in maize. Theor Appl Genet, 2011,122:771-782.
[34] Wang Y J, Xu J, Deng D X, Ding H D, Bian Y L, Yin Z T, Wu Y R, Zhou B, Zhao Y . A comprehensive meta-analysis of plant morphology, yield, and virus disease resistance QTL in maize (Zea mays L.). Planta, 2016,243:459-471.
doi: 10.1007/s00425-015-2419-9 pmid: 26474992
[35] 兰进好, 李新海, 高树仁, 张宝石, 张世煌 . 不同生态环境下玉米产量性状QTL分析. 作物学报, 2005,31:1253-1259.
Lan J H, Li X H, Gao S R, Zhang B S, Zhang S H . QTL analysis of yield components in maize under different environments. Acta Agron Sin, 2005,31:1253-1259 (in Chinese with English abstract).
[36] Zhuang J Y, Lin H X, Lu J . Analysis of QTL× environment interaction for yield components and plant height in rice. Theor Appl Genet, 1997,55:799-808.
doi: 10.1007/s001220050628
[37] 谭巍巍, 王阳, 李永祥, 刘成, 刘志斋, 彭勃, 王迪, 张岩, 孙宝成, 石云素, 宋燕春, 杨德光, 王天宇, 黎裕 . 不同环境下多个玉米穗部性状的QTL分析. 中国农业科学, 2011,44:233-244.
Tan W W, Wang Y, Li Y X, Liu C, Liu Z Z, Peng B, Wang D, Zhang Y, Sun B C, Shi Y S, Song Y C, Yang D G, Wang T Y, Li Y . QTL analysis of ear traits in maize across multiple environments. Sci Agric Sin, 2011,44:233-244 (in Chinese with English abstract).
[38] Tanksley S D, Ahn N, Causse M. RFLP mapping of the rice genome. In: Proceeding of Second International Rice Genetics Symposium. Rice Genetics II. Los Banos, Laguna, the Philippines: International Rice Research Institute, 1991. pp 435-442
[39] 赵小强 . 玉米株型相关耐旱遗传机制研究. 甘肃农业大学博士学位论文, 甘肃兰州, 2018.
Zhao X Q . Genetic mechanisms study of drought tolerance related to plant architecture in maize (Zea mays L.). PhD Dissertation of Gansu Agricultural University ,Gansu, Lanzhou, China, 2018 (in Chinese with English abstract).
[40] Hagiwara W E, Qnish K, Takamure I, Sano Y . Transgressive segregation due to linked QTLs for grain characteristics of rice. Euphytica, 2006,150:27-35.
doi: 10.1007/s10681-006-9085-8
[41] 常立国, 何坤辉, 崔婷婷, 薛吉全, 刘建超 . 玉米出籽率的QTL定位及其与环境互作分析. 农业生物技术学报, 2017,25:517-525.
Chang L G, He K H, Cui T T, Xue J Q, Liu J C . QTL mapping and QTL × environment interaction analysis of kernel ratio in maize (Zea mays). J Agric Biotechnol, 2017,25:517-525 (in Chinese with English abstract).
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[4] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[5] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[6] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[7] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[8] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[9] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[10] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[11] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[12] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[13] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[14] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[15] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!