欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (9): 1375-1385.doi: 10.3724/SP.J.1006.2019.92005

• 耕作栽培· 生理生化 • 上一篇    下一篇

不同氮素水平下双季稻株型与冠层内光截获特征研究

李艳大(),黄俊宝,叶春,舒时富,孙滨峰,陈立才,王康军,曹中盛   

  1. 江西省农业科学院农业工程研究所/江西省智能农机装备工程研究中心/江西省农业信息化工程技术研究中心, 江西南昌 330200
  • 收稿日期:2019-01-15 接受日期:2019-04-15 出版日期:2019-09-12 网络出版日期:2019-05-10
  • 通讯作者: 李艳大
  • 基金资助:
    本研究由国家重点研发计划项目(2016YFD0300608);“万人计划”青年拔尖人才项目, 国家自然科学基金项目(31260293);江西省科技计划项目(20161BBI90012);江西省科技计划项目(20182BCB22015);江西省“双千计划”项目和江西省农业科学院科技创新及成果转化基金项目资助(2016CJJ001)

Plant type and canopy light interception characteristics in double cropping rice canopy under different nitrogen rates

LI Yan-Da(),HUANG Jun-Bao,YE Chun,SHU Shi-Fu,SUN Bin-Feng,CHEN Li-Cai,WANG Kang-Jun,CAO Zhong-Sheng   

  1. Institute of Agricultural Engineering, Jiangxi Academy of Agricultural Sciences/Jiangxi Province Engineering Research Center of Intelligent Agricultural Machinery Equipment/Jiangxi Province Engineering Research Center of Information Technology in Agriculture, Nanchang 330200, Jiangxi, China
  • Received:2019-01-15 Accepted:2019-04-15 Published:2019-09-12 Published online:2019-05-10
  • Contact: Yan-Da LI
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2016YFD0300608);the National Program for Support of Top-notch Young Professionals, the National Natural Science Foundation of China(31260293);the Jiangxi Science and Technology Program(20161BBI90012);the Jiangxi Science and Technology Program(20182BCB22015);the Jiangxi Province “Double Thousand Plan” Program, and the Science & Technology Innovation and Achievements Transformation Foundation for Jiangxi Academy of Agricultural Sciences(2016CJJ001)

摘要:

本文旨在阐明双季稻株型与冠层内光合有效辐射截获的时空分布特征。选用4个不同株型早、晚稻品种, 设置4个不同施氮水平, 系统观测其植株形态和冠层内光合有效辐射截获率(IPAR)的时空分布状况。结果表明, 施氮水平对早、晚稻株高、穗长、叶长和叶基角均有显著影响, 均表现为随施氮水平的增加而增大; 早、晚稻孕穗期的分层叶面积指数(LAI)和向上累积LAI大于抽穗后12 d, 分层LAI呈冠层中部大于上部和下部的分布特征, 最大分层LAI出现在0.58相对高度处; 冠层上中部分层LAI和向上累积LAI随施氮水平的增加而增大; 向上累积LAI随相对高度呈S型曲线分布, 可用Logistic方程定量描述(R 2 > 0.99); 早、晚稻孕穗期的冠层IPAR大于抽穗后12 d, 且随施氮水平的增加而增大, 其日变化表现为正午较小, 早晚较大; 株型紧凑的早、晚稻品种, 冠层IPAR低; 冠层IPAR与向下累积LAI之间的关系可用方程IPAR = a (1-e - b ×LAI)定量描述(R 2 > 0.88); 冠层内IPAR的三维空间分布表现为冠层上中部水平面上IPAR较低, 光斑变化大, 冠层下部水平面上IPAR较高, 光斑变化较平缓, 同一冠层高度水平面上的IPAR呈不均匀分布。研究结果可为双季稻高产栽培及理想株型的优化设计提供支撑。

关键词: 双季稻, 株型, 光合有效辐射, 光截获, 分布特征

Abstract:

The interception of photosynthetically active radiation (PAR) within canopy direct affects double cropping rice photosynthesis and yield formation. The objective of this study was to elucidate the spatial and temporal distribution characteristics of plant type and canopy interception of PAR in double cropping rice under different development stages, cultivar types and nitrogen rates. Field experiments were conducted using four early and late rice cultivars with four nitrogen application rates at Jiangxi in 2016 and 2017. The plant morphology and canopy interception rate of PAR (IPAR) in different canopy heights at different development stages were measured. The nitrogen application rate had significant effects on the plant height, ear length, leaf length and basic leaf angle. All of them increased with increasing nitrogen application rate. The layer leaf area index (LAI) and upward accumulated LAI of early and late rice were greater at booting stage than at 12 d after heading. The layer LAI was greater in mid canopy than in upper and basal canopy. The maximum layer LAI appeared at 0.58 of relative canopy height. The layer LAI and upward accumulated LAI in upper and mid canopy of early and late rice increased with increasing nitrogen application rate. The distribution of upward accumulated LAI followed sigmoid curve with relative height, which could be quantitatively described with Logistic equation (R 2 > 0.99). The canopy IPAR of early and late rice was greater at booting stage than at 12 d after heading, and increased with increasing nitrogen application rate. The diurnal variation of IPAR was smaller at noon than in the morning and afternoon. Lower canopy IPAR was observed for the compact plant type of early and late rice cultivars. The relationship between canopy IPAR and downward accumulated LAI could be quantitatively described with an equation of IPAR = a (1-e - b ×LAI) (R 2> 0.88). IPAR on horizontal plane of the three-dimensional distribution was smaller, with a greater variation of light flecks in upper and mid canopy than in basal canopy. The IPAR at the same canopy height was non-uniform on the horizontal plane. These results would provide a support on cultivation for high yield and optimal design of plant type in double cropping rice.

Key words: double cropping rice, plant type, photosynthetically active radiation, light interception, distribution characteristic

表1

不同年份、生育期的早、晚稻气象数据"

作物
Crop
年份
Year
生育期
Development stages
最低气温
Minimum
temperature (°C)
最高气温
Maximum
temperature (°C)
日照时数
Sunshine hours
(h)
降水量 Precipitation
(mm)
早稻
Early rice
2016 孕穗期 Booting stage 26.3 32.5 11.2 0
抽穗后12 d 12 d after heading 25.0 34.6 11.0 0
2017 孕穗期 Booting stage 23.4 31.4 10.6 0
抽穗后12 d 12 d after heading 27.7 36.8 11.2 0
晚稻
Late rice
2016 孕穗期 Booting stage 24.5 36.8 10.4 0
抽穗后12 d 12 d after heading 21.6 30.2 9.4 0
2017 孕穗期 Booting stage 24.4 34.8 10.7 0
抽穗后12 d 12 d after heading 22.1 30.5 10.1 0

表2

不同生育期、品种、施氮水平下的早、晚稻植株形态特征"

图1

不同生育期、品种、施氮水平下的早、晚稻分层叶面积指数分布 A和B分别表示孕穗期和抽穗后12 d。缩写同表2。"

图2

不同生育期、品种、施氮水平下的早、晚稻向上累积叶面积指数分布 A和B分别表示孕穗期和抽穗后12 d。缩写同表2。"

表3

不同生育期、品种、施氮水平下的早、晚稻向上累积叶面积指数分布的拟合方程"

处理
Treatment
孕穗期 Booting stage 抽穗后12 d 12 d after heading
a b c R2 a b c R2
C1N0 3.56 22.28 6.91 0.9977 2.54 22.70 7.10 0.9954
C1N1 4.71 19.78 6.64 0.9972 3.67 15.25 6.53 0.9938
C1N2 5.84 15.94 6.37 0.9954 4.50 14.32 6.53 0.9931
C1N3 6.54 19.88 6.69 0.9967 5.14 17.10 6.59 0.9938
C2N0 4.16 14.77 5.90 0.9935 2.74 23.49 7.28 0.9975
C2N1 5.24 16.11 5.83 0.9954 3.77 17.77 6.62 0.9931
C2N2 6.29 16.17 5.87 0.9955 4.45 16.00 6.30 0.9950
C2N3 6.88 16.93 6.00 0.9956 5.27 17.77 6.47 0.9946
C3N0 4.03 16.60 6.15 0.9957 3.37 21.59 6.89 0.9968
C3N1 4.99 14.01 5.88 0.9937 4.44 18.80 6.50 0.9960
C3N2 6.08 14.14 5.77 0.9935 5.35 15.40 6.32 0.9945
C3N3 6.89 17.37 6.07 0.9955 5.94 17.69 6.59 0.9950
C4N0 4.05 20.27 6.35 0.9959 3.44 21.06 6.96 0.9968
C4N1 5.31 19.81 6.32 0.9960 4.38 17.78 6.63 0.9960
C4N2 6.14 16.11 6.07 0.9945 5.32 14.42 6.29 0.9934
C4N3 6.86 18.94 6.28 0.9954 5.82 16.45 6.45 0.9937

图3

不同生育期、品种、时刻、施氮水平下的早、晚稻冠层内PAR截获率与向下累积叶面积指数的关系 IPAR表示PAR截获率, A和B分别表示孕穗期和抽穗后12 d, 缩写同表2, R2表示决定系数。"

图4

不同生育期、时刻、冠层高度下的中嘉早17 N2处理冠层内光合有效辐射截获率的三维空间分布 H2、H4和H6分别表示距地面15 cm、45 cm和75 cm的冠层高度, A和B分别表示孕穗期和抽穗后12 d。"

[1] 邹应斌 . 长江流域双季稻栽培技术发展. 中国农业科学, 2011,44:254-262.
Zou Y B . Development of cultivation technology for double cropping rice along the Changjiang River valley. Sci Agric Sin, 2011,44:254-262 (in Chinese with English abstract).
[2] 杨建昌, 王朋, 刘立军, 王志琴, 朱庆森 . 中籼水稻品种产量与株型演进特征研究. 作物学报, 2006,32:949-955.
Yang J C, Wang P, Liu L J, Wang Z Q, Zhu Q S . Evolution characteristics of grain yield and plant type for mid-season indica rice cultivars. Acta Agron Sin, 2006,32:949-955 (in Chinese with English abstract).
[3] 敖和军, 王淑红, 邹应斌, 彭少兵, 唐启源, 方远祥, 肖安民, 陈玉梅, 熊昌明 . 超级杂交稻干物质生产特点与产量稳定性研究. 中国农业科学, 2008,41:1927-1936.
Ao H J, Wang S H, Zou Y B, Peng S B, Tang Q Y, Fang Y X, Xiao A M, Chen Y M, Xiong C M . Study on yield stability and dry matter characteristics of super hybrid rice. Sci Agric Sin, 2008,41:1927-1936 (in Chinese with English abstract).
[4] 袁隆平 . 杂交水稻超高产育种. 杂交水稻, 1997,12(6):1-6.
Yuan L P . Hybrid rice breeding for super high yield. Hybrid Rice, 1997,12(6):1-6 (in Chinese with English abstract).
[5] Flavio B, Alexandre S, Guedes C . Traditional and modern plant breeding methods with examples in rice (Oryza sativa L.). J Agric Food Chem, 2013,61:8277-8286.
[6] Peng S B, Khush G S, Virk P, Tang Q Y, Zou Y B . Progress in ideotype breeding to increase rice yield potential. Field Crops Res, 2008,108:32-38.
[7] 张晓翠, 吕川根, 胡凝, 姚克敏, 张启军, 戴其根 . 不同株型水稻叶倾角群体分布的模拟. 中国水稻科学, 2012,26:205-210.
Zhang X C, Lyu C G, Hu N, Yao K M, Zhang Q J, Dai Q G . Simulation of leaf inclination angle distribution for rice with different plant types. Chin J Rice Sci, 2012,26:205-210 (in Chinese with English abstract).
[8] Peter J T, Kenneth J B, Claas N, Reimund P R, Frank E . Recent advances in crop modelling to support sustainable agricultural production and food security under global change. Eur J Agron, 2018,100:1-3.
[9] 李艳大, 舒时富, 陈立才, 叶春, 万鹏, 王康军, 黄俊宝 . 双季稻光合生产模型的建立与应用. 应用生态学报, 2017,28:1227-1236.
Li Y D, Shu S F, Chen L C, Ye C, Wan P, Wang K J, Huang J B . Establishment and application of photosynthetic production model for double cropping rice. Chin J Appl Ecol, 2017,28:1227-1236 (in Chinese with English abstract).
[10] 汤亮, 李艳大, 张玉屏, 朱相成, 刘小军, 曹卫星, 朱艳 . 水稻冠层光分布模拟与应用. 中国水稻科学, 2011,25:427-434.
Tang L, Li Y D, Zhang Y P, Zhu X C, Liu X J, Cao W X, Zhu Y . Simulation of canopy light distribution and application in rice. Chin J Rice Sci, 2011,25:427-434 (in Chinese with English abstract).
[11] Hirose T . Development of the Monsi-Saeki theory on canopy structure and function. Ann Bot, 2005,95:483-494.
[12] 吕丽华, 陶洪斌, 夏来坤, 张雅杰, 赵明, 赵久然, 王璞 . 不同种植密度下的夏玉米冠层结构及光合特性. 作物学报, 2008,34:447-455.
Lyu L H, Tao H B, Xia L K, Zhang Y J, Zhao M, Zhao J R, Wang P . Canopy structure and photosynthesis traits of summer maize under different planting densities. Acta Agron Sin, 2008,34:447-455 (in Chinese with English abstract).
[13] 朱相成, 汤亮, 张文宇, 曹梦莹, 曹卫星, 朱艳 . 不同品种和栽培条件下水稻冠层光合有效辐射传输特征. 中国农业科学, 2012,45:34-43.
Zhu X C, Tang L, Zhang W Y, Cao M Y, Cao W X, Zhu Y . Transfer characteristics of canopy photosynthetically active radiation in different rice cultivars under different cultural conditions. Sci Agric Sin, 2012,45:34-43 (in Chinese with English abstract).
[14] Acreche M M, Briceno-Félix G, Sanchez J A M, Slafer G A . Radiation interception and use efficiency as affected by breeding in Mediterranean wheat. Field Crops Res, 2009,110:91-97.
[15] 汤亮, 朱相成, 曹梦莹, 曹卫星, 朱艳 . 水稻冠层光截获、光能利用与产量的关系. 应用生态学报, 2012,23:1269-1276.
Tang L, Zhu X C, Cao M Y, Cao W X, Zhu Y . Relationships of rice canopy PAR interception and light use efficiency to grain yield. Chin J Appl Ecol, 2012,23:1269-1276 (in Chinese with English abstract).
[16] Zhang Y B, Tang Q Y, Zou Y B, Li D Q, Qin J Q, Yang S H, Chen L J, Xia B, Peng S B . Yield potential and radiation use efficiency of “super” hybrid rice grown under subtropical conditions. Field Crops Res, 2009,114:91-98.
[17] 李艳大, 汤亮, 张玉屏, 朱相成, 曹卫星, 朱艳 . 水稻冠层光截获与叶面积和产量的关系. 中国农业科学, 2010,43:3296-3305.
Li Y D, Tang L, Zhang Y P, Zhu X C, Cao W X, Zhu Y . Relationship of PAR interception of canopy to leaf area and yield in rice. Sci Agric Sin, 2010,43:3296-3305 (in Chinese with English abstract).
[18] 黄春燕, 王登伟, 程麒, 赵鹏举, 马勤建 . 基于吸收光合有效辐射和光合有效辐射截获量监测棉花生长状况. 棉花学报, 2012,24:336-340.
Huang C Y, Wang D W, Cheng Q, Zhao P J, Ma Q J . Monitoring of cotton canopy growth status based on cotton canopy APAR and FAPAR data. Cotton Sci, 2012,24:336-340 (in Chinese with English abstract).
[19] Li Q Q, Chen Y H, Liu M Y, Zhou X B, Yu S L, Dong B D . Effects of irrigation and planting patterns on radiation use efficiency and yield of winter wheat in north China. Agric Water Manage, 2008,95:469-476.
[20] 周晓东, 朱启疆, 王锦地, 孙睿, 陈雪, 吴门新 . 夏玉米冠层内PAR截获及FPAR与LAI的关系. 自然资源学报, 2002,17(1):110-116.
doi: 10.11849/zrzyxb.2002.01.016
Zhou X D, Zhu Q J, Wang J D, Sun R, Chen X, Wu M X . Interception of PAR, relationship between FPAR and LAI in summer maize canopy. J Nat Resour, 2002,17(1):110-116 (in Chinese with English abstract).
doi: 10.11849/zrzyxb.2002.01.016
[21] 王锡平, 李保国, 郭炎, 翟志席 . 玉米冠层内光合有效辐射三维空间分布的测定和分析. 作物学报, 2004,30:568-576.
Wang X P, Li B G, Guo Y, Zhai Z X . Measurement and analysis of the 3D spatial distribution of photosynthetically active radiation in maize canopy. Acta Agron Sin, 2004,30:568-576 (in Chinese with English abstract).
[22] 李艳大, 汤亮, 张玉屏, 刘蕾蕾, 曹卫星, 朱艳 . 水稻冠层光合有效辐射的时空分布特征. 应用生态学报, 2010,21:952-958.
Li Y D, Tang L, Zhang Y P, Liu L L, Cao W X, Zhu Y . Spatiotemporal distribution of photosynthetically active radiation in rice canopy. Chin J Appl Ecol, 2010,21:952-958 (in Chinese with English abstract).
[23] Stewart D W, Costa C, Dwyer L M, Smith D L, Hamilton R L, Ma B L . Canopy structure, light interception, and photosynthesis in maize. Agron J, 2003,95:1465-1474.
[24] Andrade F H, Calvino P, Cirilo A, Barbieri P . Yield responses to narrow rows depend on increased radiation interception. Agron J, 2002,94:975-980.
[25] 林洪鑫, 潘晓华, 石庆华, 彭春瑞, 吴建富 . 栽插密度与施氮量对双季稻上部三叶叶长和叶角的影响. 作物学报, 2010,36:1743-1751.
Lin H X, Pan X H, Shi Q H, Peng C R, Wu J F . Effects of nitrogen application amount and planting density on angle and length of top three leaves in double-cropping rice. Acta Agron Sin, 2010,36:1743-1751 (in Chinese with English abstract).
[26] 吕川根, 邹江石, 胡凝, 姚克敏 . 水稻叶片形态对冠层特性和光合有效辐射传输的影响. 江苏农业学报, 2007,23:501-508.
Lyu C G, Zou J S, Hu N, Yao K M . Effects of leaf morphological factors on canopy structure and transmission of photosynthetically active radiation in rice. Jiangsu J Agric Sci, 2007,23:501-508 (in Chinese with English abstract).
[27] 闫川, 丁艳锋, 王强盛, 李刚华, 刘正辉, 缪小建, 郑永美, 魏广彬, 王绍华 . 穗肥施量对水稻植株形态、群体生态及穗叶温度的影响. 作物学报, 2008,34:2176-2183.
Yan C, Ding Y F, Wang Q S, Li G H, Liu Z H, Miao X J, Zheng Y M, Wei G B, Wang S H . Effect of panicle fertilizer application rate on morphological, ecological characteristics, and organ temperature of rice. Acta Agron Sin, 2008,34:2176-2183 (in Chinese with English abstract).
[28] 张艳敏, 李晋生, 钱维朴, 黄德明 . 小麦冠层结构与光分布研究. 华北农学报, 1996,11(1):54-58.
doi: 10.3321/j.issn:1000-7091.1996.01.010
Zhang Y M, Li J S, Qian W P, Huang D M . Canopy structure and light distribution in winter wheat. Acta Agric Boreali-Sin, 1996,11(1):54-58 (in Chinese with English abstract).
doi: 10.3321/j.issn:1000-7091.1996.01.010
[29] Maddonni G A, Otegui M E . Leaf area, light interception, and crop development in maize. Field Crops Res, 1996,48:81-87.
[30] Hu B, Tang L Q, Liu H, Zhao X J, Liu Z R, Wang Y S, Wang L C . Trends of photosynthetically active radiation over China from 1961 to 2014. Int J Climatol, 2018,38:4007-4024.
[31] 于强, 王天铎, 刘建栋, 孙菽芬 . 玉米株型与冠层光合作用的数学模拟研究: I. 模型与验证. 作物学报, 1998,24:7-15.
Yu Q, Wang T D, Liu J D, Sun S F . A mathematical study on crop architecture and canopy photosynthesis: I. Model. Acta Agron Sin, 1998,24:7-15 (in Chinese with English abstract).
[1] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[2] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[3] 刘磊, 廖萍, 邵华, 刘劲松, 杨星莲, 王静, 王海媛, 张俊, 曾勇军, 黄山. 施石灰和秸秆还田对双季稻田土壤钾素表观平衡的互作效应[J]. 作物学报, 2022, 48(1): 226-237.
[4] 田昌, 靳拓, 周旋, 黄思怡, 王英姿, 徐泽, 彭建伟, 荣湘民, 谢桂先. 控释尿素对环洞庭湖区双季稻吸氮特征和产量的影响[J]. 作物学报, 2021, 47(4): 691-700.
[5] 张帆, 杨茜. 大麦-双季稻轮作体系有机物料与化肥配施对大麦资源利用效率及产量的影响[J]. 作物学报, 2021, 47(12): 2522-2531.
[6] 李艳大, 曹中盛, 舒时富, 孙滨峰, 叶春, 黄俊宝, 朱艳, 田永超. 基于作物生长监测诊断仪的双季稻叶干重监测模型[J]. 作物学报, 2021, 47(10): 2028-2035.
[7] 金容,李钟,杨云,周芳,杜伦静,李小龙,孔凡磊,袁继超. 密度和株行距配置对川中丘区夏玉米群体光分布及雌雄穗分化的影响[J]. 作物学报, 2020, 46(4): 614-630.
[8] 王存虎,刘东,许锐能,杨永庆,廖红. 大豆叶柄角的QTL定位分析[J]. 作物学报, 2020, 46(01): 9-19.
[9] 廖萍,刘磊,何宇轩,唐刚,张俊,曾勇军,吴自明,黄山. 施石灰和秸秆还田对双季稻产量和氮素吸收的互作效应[J]. 作物学报, 2020, 46(01): 84-92.
[10] 柏延文,杨永红,朱亚利,李红杰,薛吉全,张仁和. 种植密度对不同株型玉米冠层光能截获和产量的影响[J]. 作物学报, 2019, 45(12): 1868-1879.
[11] 孟繁圆,冯利平,张丰瑶,张祎,伍露,王春雷,闫锦涛,彭明喜,莫志鸿,余卫东. 北部冬麦区冬小麦越冬冻害时空变化特征[J]. 作物学报, 2019, 45(10): 1576-1585.
[12] 吕伟生,曾勇军,石庆华,潘晓华,黄山,商庆银,谭雪明,李木英,胡水秀,曾研华. 双季机插稻叶龄模式参数及高产品种特征[J]. 作物学报, 2018, 44(12): 1844-1857.
[13] 郝岭,邢嘉鹏,段留生,张明才*,李召虎. 丙环唑对玉米幼苗生长的调控及其相关机制[J]. 作物学报, 2017, 43(11): 1603-1610.
[14] 陈波,李军,花劲,霍中洋,张洪程,程飞虎,黄大山,陈忠平,陈恒,郭保卫,周年兵,舒鹏. 双季晚稻不同类型品种产量与主要品质性状的差异[J]. 作物学报, 2017, 43(08): 1216-1225.
[15] 沈杰,蔡艳,何玉亭,李启权,杜宣延,王昌全,罗定棋. 基于归一化法的烤烟干物质积累建模与特征分析[J]. 作物学报, 2017, 43(03): 442-453.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!