欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (9): 1365-1374.doi: 10.3724/SP.J.1006.2019.81087

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大麦蛋白质二硫键异构酶基因家族的鉴定与表达分析

时丽洁1,2,蒋枞璁2,王方梅1,2,杨平2,*(),冯宗云1,*()   

  1. 1 四川农业大学农学院大麦青稞研究中心, 四川成都 611130
    2 中国农业科学院作物科学研究所, 北京 100081
  • 收稿日期:2018-12-11 接受日期:2019-04-15 出版日期:2019-09-12 网络出版日期:2019-04-18
  • 通讯作者: 杨平,冯宗云
  • 作者简介:E-mail: 1013842716@qq.com
  • 基金资助:
    本研究由中国农业科学院基本科研业务费工程(S2018YC01);本研究由中国农业科学院基本科研业务费工程(S2018PY03);国家现代农业产业技术体系(大麦青稞)建设专项资助(CARS-05)

Genome-wide characterization and transcriptional analysis of the protein disulfide isomerase-like genes in barley (Hordeum vulgare)

SHI Li-Jie1,2,JIANG Cong-Cong2,WANG Fang-Mei1,2,YANG Ping2,*(),FENG Zong-Yun1,*()   

  1. 1 Barley Research Center, Colleague of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
    2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2018-12-11 Accepted:2019-04-15 Published:2019-09-12 Published online:2019-04-18
  • Contact: Ping YANG,Zong-Yun FENG
  • Supported by:
    This study was supported by the Fundamental Research Funds for Central Non-Profit of Chinese Academy of Agricultural Sciences(S2018YC01);This study was supported by the Fundamental Research Funds for Central Non-Profit of Chinese Academy of Agricultural Sciences(S2018PY03);the China Agriculture Research System(CARS-05)

摘要:

蛋白质二硫键异构酶(protein disulfide isomerases, PDIs)是定位于真核生物内质网中的一类蛋白, 具有催化蛋白质二硫键氧化还原反应与协助蛋白质发生构型变化、类似分子伴侣的功能, 参与生长发育、生物或非生物胁迫应答等方面的调控。真核生物中PDI基因家族的分子鉴定已有报道, 但是对大麦PDI基因家族的鉴定分析鲜有报道。本研究利用生物信息学分析手段鉴定了10个大麦PDI-Like基因(HvPDILs), 并分析了相应编码蛋白的结构特征。与其他物种PDILs的系统发育分析发现, 10个大麦PDILs分处在8个不同的系统分支, 与小麦PDILs高度同源。对公共数据库中的组织和时空表达数据分析发现, HvPDILs基因均表达, 且具组织和时空表达特异性。对接种大麦温性花叶病毒(BaMMV)之后的叶片样品进行基因表达水平分析, 发现其中5个HvPDILs基因出现显著的表达差异, 说明其参与病毒感染过程, 但参与方式及作用机制还有待后续研究。

关键词: 大麦, 蛋白质二硫键异构酶, 基因家族, 大麦黄花叶病

Abstract:

Protein disulfide isomerase (PDI) and PDI-like proteins (PDILs) belong to a protein family that are usually located on endoplasmic reticulum and highly conserved across eukaryotes. The main function of PDILs is catalyzing the redox and isomerization of disulfide bonds in protein precursors via the thioredoxin (TRX) domain. PDILs have been also reported as chaperones in folding and unfolding of proteins, thus being important in growth and development, as well as biotic or abiotic stress responses of plant. In this study, we identified by bioinformatics analysis 10 members of barley PDILs (HvPDILs), which were subjected for analyzing the physical location, protein structure and subcellular localization. The phylogenetic analysis revealed eight sub-branches of plant PDILs, and barley PDILs showed a high sequence homology with wheat PDILs. The transcriptional analysis revealed large variation of the transcription abundance of PDILs in different tissues and development stages. Notably, mechanical inoculation of Barley mild mosaic virus (BaMMV) resulted in transcriptional re-programming of several HvPDILs. This result suggests the association between PDILs and BaMMV infection, despite that the functional mechanism remains largely unknown and needs further studies.

Key words: barley, protein disulfide isomerase, gene family, barley yellow mosaic virus disease

表1

大麦PDI基因家族信息"

基因名称
Gene name
水稻同源基因
Rice orthologous gene
NCBI登录号
Acc. ID
基因ID
Gene ID
染色体位置
Chromosomal location
cDNA全长
Full length cDNA
HvPDIL1-1 OsPDIL1_1 AK357991.1 HORVU4Hr1G043910.1 4H:350262817-350266613 1542
HvPDIL1-2 OSPDIL1_2 AK368066.1 HORVU2Hr1G076390.6 2H:549859450-549862026 1554
HvPDIL1-3 OSPDIL1_4 AK370108.1 HORVU6Hr1G001700.1 6H:5173471-5182932 1764
HvPDIL1-4 OSPDIL1_5 AK366963.1 HORVU7Hr1G026030.2 7H:44299270-44302170 1635
HvPDIL2-1 OSPDIL2_1 AK249580.1 HORVU1Hr1G022810.1 1H:98741192-98744845 1104
HvPDIL2-2 OSPDIL2_3 AK353639.1 HORVU5Hr1G067570.1 5H:513285275-513290639 1323
HvPDIL5-1 OSPDIL5_1 AK250421.1 HORVU4Hr1G056730.1 4H:476590992-476593244 456
HvPDIL5-2 OSPDIL5_2 AK251979.1 HORVU2Hr1G075810.4 2H:545243929-545244816 1245
HvPDIL5-3 OSPDIL5_3 AK249445.1 HORVU6Hr1G059710.3 6H:395564404-395567220 1257
HvPDIL5-4 OSPDIL5_4 AK251501.1 HORVU2Hr1G046000.3 2H:243330620-243337299 1458

图1

HvPDILs基因的染色体分布 图中6个白色圆柱代表大麦的6条染色体, 圆柱左侧和右侧分别是基因的物理位置(Mb)和基因名称。由于3H染色体上没有PDILs基因, 故未展示。"

图2

大麦PDILs蛋白的结构示意图"

表2

大麦PDILs蛋白特质"

图3

大麦与小麦、水稻、玉米、拟南芥PDILs同源蛋白的系统进化树"

图4

HvPDILs基因的组织表达情况 EMB: 胚胎; ROO1: 幼根; LEA: 苗期地上部分; INF2: 新生穗; NOD: 第3节间分蘖; CAR5: 前期灌浆籽粒; CAR15: 后期灌浆籽粒; ETI: 黄化苗; LEM: 主穗; LOD: 浆片; PAL: 内稃; EPI: 外颖壳; RAC: 穗轴; ROO2: 灌浆期根部; SEN: 衰老叶。"

表3

qPCR引物及扩增片段"

引物名称
Primer name
引物序列
Sequence (5'-3')
退火温度
Tm (°C)
扩增片段大小
Size of
amplicon (bp)
备注
Remarks
HvUBC-F AAGCAGCCAGAATGTACAGCGAGAAC 63 152 内参基因
Reference gene
HvUBC-R GGTACAGACCAGCAAAGCCAGAAATG
BaMMV-F GGCACTTTGTGTTATGCAATGG 63 138 检测BaMMV
Check the presence of BaMMV
BaMMV-R TGCCACCCTCAGGTAGGATTAG
HvPDIL1_1-F CGTTGCTTGGTTGAAGGATT 60 199 检测基因表达
Check the expression of HvPDIL1-1
HvPDIL1_1-R GATGGGTGCTAGCTTCTTGC
HvPDIL1_2-F CAGACCCGACCAACCATAAG 60 194 检测基因表达
Check the expression of HvPDIL1-2
HvPDIL1_2-R ATACTCGAAGGCACGGTCAG
引物名称
Primer name
引物序列
Sequence (5'-3')
退火温度
Tm (°C)
扩增片段大小
Size of amplicon (bp)
备注
Remarks
HvPDIL1_3-F GTGTGGCCATTGTCAGTCAC 60 200 检测基因表达
Check the expression of HvPDIL1-3
HvPDIL1_3-R CCCCCTCGAAAGTTATAGGC
HvPDIL1_4-F AGTTGGCCAAGCATTTCAGT 60 198 检测基因表达
Check the expression of HvPDIL1-4
HvPDIL1_4-R CTGCAGCTTCTCCTTGATGA
HvPDIL2_1-F CGGGACTTGGATGACTTTGT 60 200 检测基因表达
Check the expression of HvPDIL2-1
HvPDIL2_1-R AGGACCACTGAGCTTTGCAG
HvPDIL2_2-F CTAGCGCAGATGTGATGGAA 60 198 检测基因表达
Check the expression of HvPDIL2-2
HvPDIL2_2-R GCTTCTCCAGATCAGCTTGC
HvPDIL5_1-F CGAAGAGACCTTCTCCGACA 60 200 检测基因表达
Check the expression of HvPDIL5-1
HvPDIL5_1-R GAATGTCCACCTTTGAGCAGA
HvPDIL5_2-F CCCCGAGTTAGATGAAGCTG 60 199 检测基因表达
Check the expression of HvPDIL5-2
HvPDIL5_2-R AAGATTGCGGACAAGCAAGT
HvPDIL5_3-F GAAACTTCCATGCGGTTGAT 60 199 检测基因表达
Check the expression of HvPDIL5-3
HvPDIL5_3-R CCAAACTCTCCAAACCCTCA
HvPDIL5_4-F CCTGAAATGGATGGCAGAAT 60 200 检测基因表达
Check the expression of HvPDIL5-4
HvPDIL5_4-R TCCATAGCCGCGACTAAACT

图5

病毒接种后叶片中HvPDILs基因的相对表达分析 差异显著性统计方法为t检验(*P < 0.05; **P < 0.01), 误差棒表示标准误差。"

[1] Freedman R B, Hirst T R, Tuite M F . Protein disulphide isomerase: building bridges in protein folding. Trends Biochem Sci, 1994,19:331-336.
[2] Wu H, Wensley E, Bhave M . Identification and analysis of genes encoding a novel ER-localised cyclophilin B in wheat potentially involved in storage protein folding. Plant Sci, 2009,176:420-432.
[3] Quan H, Fan G, Wang C C . Independence of the chaperone activity of protein disulfide isomerase from its thioredoxin-like active site. J Biol Chem, 1995,270:17078-17080.
[4] Jacquot J P, Gelhaye E, Rouhier N, Corbier C, Didierjean C, Aubry A . Thioredoxins and related proteins in photosynthetic organisms: molecular basis for thiol dependent regulation. Biochem Pharmacol, 2002,64:1065-1069.
[5] Darby N J, Kemmink J, Creighton T E . Identifying and characterizing a structural domain of protein disulfide isomerase. Biochemistry, 1996,35:10517-10528.
[6] Kemmink J, Darby N J, Dijkstra K, Nilges M, Creighton T E . The folding catalyst protein disulfide isomerase is constructed of active and inactive thioredoxin modules. Curr Biol, 1997,7:239-245.
[7] Klappa P, Ruddock L W, Darby N J, Freedman R B . The b' domain provides the principal peptide-binding site of protein disulfide isomerase but all domains contribute to binding of misfolded proteins. EMBO J, 1998,17:927-935.
[8] Lucero H A, Kaminer B . The role of calcium on the activity of ERcalcistorin/protein-disulfide isomerase and the significance of the C-terminal and its calcium binding. A comparison with mammalian protein-disulfide isomerase. J Biol Chem, 1999,274:3243-3251.
[9] Denecke J, De Rycke R, Botterman J . Plant and mammalian sorting signals for protein retention in the endoplasmic reticulum contain a conserved epitope. EMBO J, 1992,11:2345-2355.
[10] Selles B, Jacquot J P, Rouhier N . Comparative genomic study of protein disulfide isomerases from photosynthetic organisms. Genomics, 2011,97:37-50.
[11] 陈珍, 江琼, 朱诚 . 植物中的蛋白质二硫键异构酶及其类蛋白. 植物生理学报, 2013,49:715-721.
Chen J, Jiang Q, Zhu C . Protein disulfide isomerise and PDI-like proteins in plant. Plant Physiol J, 2013,49:715-721 (in Chinese with English abstract).
[12] Houston N L, Fan C, Xiang J Q, Schulze J M, Jung R, Boston R S . Phylogenetic analyses identify 10 classes of the protein disulfide isomerase family in plants, including single-domain protein disulfide isomerase-related proteins. Plant Physiol, 2005,137:762-778.
[13] Narindrasorasak S, Yao P, Sarkar B . Protein disulfide isomerase, a multifunctional protein chaperone, shows copper-binding activity. Biochem Biophys Res Commun, 2003,311:405-414.
[14] Andeme Ondzighi C, Christopher D A, Cho E J, Chang S C, Staehelin L A . Arabidopsis protein disulfide isomerase-5 inhibits cysteine proteases during trafficking to vacuoles before programmed cell death of the endothelium in developing seeds. Plant Cell, 2008,20:2205-2220.
[15] Levitan A, Trebitsh T, Kiss V, Pereg Y, Dangoor I, Danon A . Dual targeting of the protein disulfide isomerase RB60 to the chloroplast and the endoplasmic reticulum. Proc Natl Acad Sci USA, 2005,102:6225-6230.
[16] Wang H, Boavida L C, Ron M, McCormick S . Truncation of a protein disulfide isomerase, PDIL2-1, delays embryo sac maturation and disrupts pollen tube guidance in Arabidopsis thaliana. Plant Cell, 2008,20:3300-3311.
[17] Johnson J C, Appels R, Bhave M . The PDI genes of wheat and their syntenic relationship to the esp2 locus of rice. Funct Integr Genomics, 2006,6:104-121.
[18] Takemoto Y, Coughlan S J, Okita T W, Satoh H, Ogawa M, Kumamaru T . The rice mutant esp2 greatly accumulates the glutelin precursor and deletes the protein disulfide isomerase. Plant Physiol, 2002,128:1212-1222.
[19] Han X, Wang Y, Liu X, Jiang L, Ren Y, Liu F, Peng C, Li J, Jin X, Wu F, Wang J, Guo X, Zhang X, Cheng Z, Wan J . The failure to express a protein disulphide isomerase-like protein results in a floury endosperm and an endoplasmic reticulum stress response in rice. J Exp Bot, 2012,63:121-130.
[20] Satoh-Cruz M, Crofts A J, Takemoto-Kuno Y, Sugino A., Washida H, Crofts N, Okita T W, Ogawa M, Satoh H, Kumamaru T . Protein disulfide isomerase like 1-1 participates in the maturation of proglutelin within the endoplasmic reticulum in rice endosperm. Plant Cell Physiol, 2010,51:1581-1593.
[21] Onda Y, Nagamine A, Sakurai M, Kumamaru T, Ogawa M, Kawagoe Y . Distinct roles of protein disulfide isomerase and P5 sulfhydryl oxidoreductases in multiple pathways for oxidation of structurally diverse storage proteins in rice. Plant Cell, 2011,23:210-223.
[22] Li C P, Larkins B A . Expression of protein disulfide isomerase is elevated in the endosperm of the maize floury-2 mutant. Plant Mol Biol, 1996,30:873-882.
[23] Lu D P, Christopher D A . Endoplasmic reticulum stress activates the expression of a sub-group of protein disulfide isomerase genes and AtbZIP60 modulates the response in Arabidopsis thaliana. Mol Genet Genomics, 2008,280:199-210.
[24] 刘颖慧, 王秀堂, 石云素, 石云素, 黄亚群, 宋燕春, 王天宇, 黎裕 . 玉米蛋白质二硫键异构酶(PDI)基因的特征和表达. 中国生物化学与分子生物学报, 2009,25:229-234.
Liu Y H, Wang X T, Shi Y S, Huang Y Q, Song Y C, Wang T Y, Li Y . Expression and characterization of a protein disulfideisomerases in maize (Zea mays L.). Chin J Biochem Mol Biol, 2009,25:229-234 (in Chinese with English abstract).
[25] Chauhan H, Khurana N, Tyagi A K, Khurana J, Khurana P . Identification and characterization of high temperature stress responsive genes in bread wheat (Triticum aestivum L.) and their regulation at various stages of development. Plant Mol Biol, 2011,75:35-51.
[26] Ray S, Anderson J M, Urmeev F I, Goodwin S B . Rapid induction of a protein disulfide isomerase and defense-related genes in wheat in response to the hemibiotrophic fungal pathogen Mycosphaerella graminicola. Plant Mol Biol, 2003,53:701-714.
[27] Faheem M, Li Y, Arshad M, Jiangyue C, Jia Z, Wang Z, Xiao J, Wang H, Cao A, Xing L, Yu F, Zhang R, Xie Q, Wang X . A disulphide isomerase gene (PDI-V) from Haynaldia villosa contributes to powdery mildew resistance in common wheat. Sci Rep, 2016,6:24227.
[28] Kanyuka K, Ward E, Adams M J . Polymyxa graminis and the cereal viruses it transmits: a research challenge. Mol Plant Pathol, 2003,4:393-406.
[29] Kuhne T . Soil-borne viruses affecting cereals: known for long but still a threat. Virus Res, 2009,141:174-183.
[30] Yang P, Lupken T, Habekuss A, Goetz H, Burkhard S, Benjamin K, Ruvini A, Axel H, Jochen K, Uwe S, Frank O, Nils S . PROTEIN DISULFIDE ISOMERASE LIKE 5-1 is a susceptibility factor to plant viruses. Proc Natl Acad Sci USA, 2014,111:2104-2109.
[31] d’Aloisio E, Paolacci A R, Dhanapal A P, Tanzarella O A, Porceddu E, Ciaffi M . The protein disulfide isomerase gene family in bread wheat (T. aestivum L.). BMC Plant Biol, 2010,10:101.
[32] Zhu C, Luo N, He M, Chen G, Zhu J, Yin G, Li X, Hu Y, Li J, Yan Y . Molecular characterization and expression profiling of the protein disulfide isomerase gene family in Brachypodium distachyon L. PLoS One, 2014,9:e94704.
[33] Ordon F, Friedt W . Mode of inheritance and genetic diversity of BaMMV resistance of exotic barley germplasms carrying genes different from ‘ym4’. Theor Appl Genet, 1993,86:229-233.
[34] Roustan V, Roustan P J, Weidinger M, Reipert S, Kapusi E, Shabrangy A, Stoger E, Weckwerth W, Ibl V . Microscopic and proteomic analysis of dissected developing barley endosperm layers reveals the starchy endosperm as prominent storage tissue for ER-derived hordeins alongside the accumulation of barley protein disulfide isomerase (HvPDIL1-1). Front Plant Sci, 2018,9:1248.
[35] Jeong W, Lee D Y, Park S, Rhee S G . ERp16, an endoplasmic reticulum-resident thiol-disulfide oxidoreductase: biochemical properties and role in apoptosis induced by endoplasmic reticulum stress. J Biol Chem, 2008,283:25557-25566.
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[3] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[4] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
[5] 贺军与, 钟伟, 陈云琼, 王卫斌, 熊静蕾, 蒋亚丽, 施辉蒙, 陈升位. 大麦籽粒发育进程中7种黄酮类化合物的积累特性分析[J]. 作物学报, 2021, 47(8): 1624-1630.
[6] 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214.
[7] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
[8] 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析[J]. 作物学报, 2021, 47(5): 882-893.
[9] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786.
[10] 张帆, 杨茜. 大麦-双季稻轮作体系有机物料与化肥配施对大麦资源利用效率及产量的影响[J]. 作物学报, 2021, 47(12): 2522-2531.
[11] 李鹏, 刘彻, 宋皓, 姚盼盼, 苏沛霖, 魏跃伟, 杨永霞, 李青常. 烟草非特异性脂质转移蛋白基因家族的鉴定与分析[J]. 作物学报, 2021, 47(11): 2184-2198.
[12] 徐婷婷, 汪巧玲, 邹淑琼, 狄佳春, 杨欣, 朱银, 赵涵, 颜伟. 基于高通量测序的大麦InDel标记开发及应用[J]. 作物学报, 2020, 46(9): 1340-1350.
[13] 黄小芳,毕楚韵,石媛媛,胡韵卓,周丽香,梁才晓,黄碧芳,许明,林世强,陈选阳. 甘薯基因组NBS-LRR类抗病家族基因挖掘与分析[J]. 作物学报, 2020, 46(8): 1195-1207.
[14] 徐银萍, 潘永东, 刘强德, 姚元虎, 贾延春, 任诚, 火克仓, 陈文庆, 赵锋, 包奇军, 张华瑜. 大麦种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2020, 46(3): 448-461.
[15] 杨晓梦, 李霞, 普晓英, 杜娟, Muhammad Kazim Ali, 杨加珍, 曾亚文, 杨涛. 大麦重组自交系群体籽粒总花色苷含量和千粒重QTL定位[J]. 作物学报, 2020, 46(01): 52-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!