作物学报 ›› 2019, Vol. 45 ›› Issue (12): 1784-1795.doi: 10.3724/SP.J.1006.2019.94053
赵晶,李旭彤,梁学忠,王志城,崔静,陈斌,吴立强,王省芬,张桂寅,马峙英,张艳()
Jing ZHAO,Xu-Tong LI,Xue-Zhong LIANG,Zhi-Cheng WANG,Jing CUI,Bin CHEN,Li-Qiang WU,Xing-Fen WANG,Gui-Yin ZHANG,Zhi-Ying MA,Yan ZHANG()
摘要:
黄萎病是降低棉花产量和品质较为严重的维管束病害。棉花在抵抗病原菌的过程中, 抗病基因起着尤为重要的作用。漆酶是一种多功能氧化酶, 在植物木质素合成和提高植株抗逆性等方面发挥着重要作用。高质量版本的基因组是提升基因家族分析准确性的必要条件。本研究以目前最新的陆地棉TM-1高质量版本基因组为参考, 通过生物信息学分析鉴定了陆地棉基因组中的Laccase (GhirLAC)基因家族, 并对其进行了理化性质、基因结构、染色体定位以及在黄萎病胁迫下的表达模式分析。结果表明, 陆地棉TM-1基因组中共包含83个GhirLAC家族成员, 分布在24条染色体上, 所有GhirLAC蛋白均定位在胞外, 且具有相同/相似的保守基序。系统发育树分析显示, GhirLAC基因家族成员可分为7个亚组。结合黄萎病胁迫下棉花转录组数据, 将GhirLAC基因家族各成员的表达分为3种模式, 其中第1类和第2类GhirLAC基因在黄萎病菌胁迫下分别呈现有规律的表达量升高和降低, 推测这些基因在棉花抗黄萎病反应中发挥重要功能。荧光定量PCR结果表明, GhirLAC02 (GhLAC4)、GhirLAC38 (GhLAC11)和GhirLAC20 (GhLAC12) 3个候选基因均受黄萎病菌诱导表达, 其表达趋势与转录组数据相吻合。本研究为以后深入解析棉花GhirLAC基因的抗病功能及分子机制奠定基础。
[1] |
Gao X Q, Wheeler T, Li Z H, Kenerley C M, He P, Shan L B . Silencing GhNDR1 and GhMKK2 compromises cotton resistance to Verticillium wilt. Plant J, 2011,66:293-305.
doi: 10.1111/j.1365-313X.2011.04491.x |
[2] |
Bolek Y, Elzik K M, Pepper A E, Bell A A, Magill C W, Thaxton P M, Reddy O U K . Mapping of Verticillium wilt resistance genes in cotton. Plant Sci, 2005,168:1581-1590.
doi: 10.1016/j.plantsci.2005.02.008 |
[3] |
Zhang Y, Wang X F, Rong W, Yang J, Li Z K, Wu L Q, Zhang G Y, Ma Z Y . Histochemical analyses reveal that stronger intrinsic defenses in Gossypium barbadense than in G. hirsutum are associated with resistance to Verticillium dahliae. Mol Plant Microbe Int, 2017,30:984-996.
doi: 10.1094/MPMI-03-17-0067-R |
[4] | Cai Y F, He X H, Mo J C, Sun Q, Yang J P, Liu J G . Molecular research and genetic engineering of resistance to Verticillium wilt in cotton: a review. Afr J Biotechnol, 2009,8:7363-7372. |
[5] | 张天真, 周兆华, 闵留芳, 郭旺珍, 潘家驹, 何金龙, 纵瑞收, 汤杰珍, 郭小平, 蒯本科, 王谧, 朱协飞, 陈兆夏, 唐灿明, 刘康, 孙敬, 惠书勤, 黄在进 . 棉花对黄萎病的抗性遗传模式及抗(耐)病品种的选育技术. 作物学报, 2000,26:673-680. |
Zhang T Z, Zhou Z H, Min L F, Guo W Z, Pan J J, He J L, Zong R S, Tang J Z, Guo X P, Kuai B K, Wang M, Zhu X F, Chen Z X, Tang C M, Liu K, Sun J, Hui S Q, Huang Z J . Inheritance of cotton resistance to Verticillium dahliae and strategies to develop resistant or tolerant cultivars. Acta Agron Sin, 2000,26:673-680 (in Chinese with English abstract). | |
[6] | Malinovsky F G, Fangel J U, Willats W G T . The role of the cell wall in plant immunity. Front Plant Sci, 2014,5:178. |
[7] |
Bowers J H, Nameth S T, Riedel R M, Rowe R C . Infection and colonization of potato roots by Verticillium dahliae as affected by Pratylenchus penetrans and P. crenatus. Phytopathology, 1996,86:614-621.
doi: 10.1094/Phyto-86-614 |
[8] |
Fradin E F, Thomma B P H J . Physiology and molecular aspects of Verticillium wilt caused by V. dahliae and V. alboatrum. Mol Plant Pathol, 2006,7:71-86.
doi: 10.1111/mpp.2006.7.issue-2 |
[9] | 赵蕾, 张天宇 . 植物病原菌产生的降解酶及其作用. 微生物学通报, 2002,29:89-93. |
Zhao L, Zhang T Y . Production and roles of the degrading enzymes prodused by phytopathogen. Microbiol Chin, 2002,29:89-93 (in Chinese with English abstract). | |
[10] |
Smit F, Dubery I A . Cell wall reinforcement in cotton hypocotyls in response to a Verticillium dahliae elicitor. Phytochemistry, 1997,44:811-815.
doi: 10.1016/S0031-9422(96)00595-X |
[11] |
Wang Y, Coussa O B, Lebris P, Antelme S, Soulhat C, Gineau E, Dalmais M, Bendahmane A, Morin H, Mouille G, Legée F, Cézard L, Lapierre C, Sibout R . LACCASE 5 is required for lignification of the Brachypodium distachyon culm. Plant Physiol, 2017,168:192-204.
doi: 10.1104/pp.114.255489 |
[12] | 王骥, 朱木兰, 卫志明 . 棉花漆酶基因在转基因新疆杨中的表达及其对木质素合成的影响. 分子细胞生物学报, 2008, ( 1):11-18. |
W J, Zhu M L, Wei Z M . Cotton Laccase gene overexpression in transgenic Populus alba var.pyramidalis and its effects on the lignin biosynthesis in transgenic plants. J Mol Cell Biol, 2008, ( 1):11-18 (in Chinese with English abstract). | |
[13] |
赵先炎, 庞明利, 赵强, 任怡然, 郝玉金, 由春香 . 番茄漆酶基因LeLACmiR397的克隆与表达分析. 园艺学报, 2015,42:1285-1298.
doi: 10.16420/j.issn.0513-353x.2014-1079 |
Zhao X Y, Pang M L, Zhao Q, Ren Y R, Hao Y J, You C X . Cloning and expression analysis of tomato LeLACmiR397 gene. Acta Hortic Sin, 2015,42:1285-1298 (in Chinese with English abstract).
doi: 10.16420/j.issn.0513-353x.2014-1079 |
|
[14] | 田奇琳, 林玉玲, 郑庆游, 苏荣峰, 赖钟雄 . 龙眼DlLac7的克隆及其表达调控分析. 果树学报, 2016,33:1185-1193. |
Tian Q L, Lin Y L, Zheng Q Y, Su R F, Lai Z X . Cloning and expression analyses of DlLac7 in Dimocarpus longan. J Fruit Sci, 2016,33:1185-1193 (in Chinese with English abstract). | |
[15] | 黄晨, 陈帅, 程小芳, 张新, 黎星辉, 孙晓玲 . 茶树漆酶基因CsLAC4和CsLAC12的克隆与表达分析. 植物保护学报, 2018,45:1069-1077. |
Huang C, Chen S, Cheng X F, Zhang X, Li X H, Sun X L . Cloning and expression analysis of the laccase genes CsLAC4 and CsLAC12 from the tea plant. J Plant Prot, 2018, 45:1069-1077 (in Chinese with English abstract). | |
[16] |
Liu Q Q, Luo L, Wang X X, Shen Z G, Zheng L Q . Comprehensive analysis of rice laccase gene(OsLAC) family and ectopic expression of OsLAC10 enhances tolerance to copper stress in Arabidopsis. Int J Mol Sci, 2017,18:1-16.
doi: 10.3390/ijms18010001 |
[17] |
Wang J H, Feng J J, Jia W T, Fan P X, Bao H X G D L, Li S Z, Li Y X . Genome-wide dentification of sorghum bicolor laccases reveals potential targets for lignin modification. Front Plant Sci, 2017,8:714.
doi: 10.3389/fpls.2017.00714 |
[18] |
Roy J L, Blervacq A S, Créach A, Huss B, Hawkins S, Neutelings G . Spatial regulation of monolignol biosynthesis and laccase genes control developmental and stress-related lignin in flax. BMC Plant Biol, 2017,17:124.
doi: 10.1186/s12870-017-1072-9 |
[19] |
Zhang Y, Wu L Z, Wang X F, Chen B, Zhao J, Cui J, Li Z K, Yang J, Wu L Q, Wu J H, Zhang G Y, Ma Z Y . The cotton laccase gene GhLAC15 enhanced Verticillium wilt resistance via increasing defense-induced lignification and lignin components in the cell wall of plants. Mol Plant Pathol, 2019,20:309-322.
doi: 10.1111/mpp.2019.20.issue-3 |
[20] | Hu Q, Min L, Yang X Y, Jin S X, Zhang L, Li Y Y, Ma Y Z, Qi X W, Li D Q, Liu H B, Lindsey K, Zhu L F, Zhang X L . Laccase GhLac1 modulates broad-spectrum biotic stress tolerance via DAMP-triggered immunity. Plant Physiol, 2017,176:1-34. |
[21] | Balasubramanian V K, Rai K M, Thu S W, Hii M M, Mendu V . Genome-wide identification of multifunctional laccase gene family in cotton (Gossypium spp.); expression and biochemical analysis during fiber development. Sci Rep, 2016,29:6. |
[22] |
Li F G, Fan G Y, Lu C R, Xiao G H, Zou C S, Kohel R J, Ma Z Y, Shang H H, Ma X F, Wu J Y, Liang X M, Huang G, Percy R G, Liu K, Yang W H, Chen W B, Du X M, Shi C C, Yuan Y L, Ye W W, Liu X, Zhang X Y, Liu W Q, Wei H L, Wei S J, Huang G D, Zhang X L, Zhu S J, Zhang H, Sun F M, Wang X F, Liang J, Wang J H, He Q, Huang L H, Wang J, Cui J J, Song G L, Wang K B, Xu X, Yu J Z, Zhu Y X, Yu S X . Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol, 2015,33:524-530.
doi: 10.1038/nbt.3208 |
[23] |
Wang M J, Tu L L, Yuan D J, Zhu D, Shen C, Li J Y, Liu F Y, Pei L L, Wang P C, Zhao G N, Ye Z X, Huang H, Yan F L, Ma Y Z, Zhang L, Liu M, You J Q, Yang Y C, Liu Z P, Huang F, Li B Q, Qiu P, Zhang Q H, Zhu L F, Jin S X, Yang X Y, Min L, Li G L, Chen L L, Zheng H K, Lindsey K, Lin Z X, Udall J A, Zhang X L . Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet, 2019,51:224-229.
doi: 10.1038/s41588-018-0282-x |
[24] | Yu J, Jung S, Cheng C H, Ficklin1 S P, Lee T, Zheng P, Jones D, Percy R G, Main D . CottonGen: a genomics, genetics and breeding database for cotton research. Nucleic Acids Res, 2014,42:1229-1236. |
[25] | Zhang Y, Wang X F, Rong W, Yang J, Ma Z Y . Island cotton enhanced disease susceptibility 1 gene encoding a lipase-like protein plays a crucial role in response to Verticillium dahliae by regulating the SA level and H2O2 accumulation. Front Plant Sci, 2016,7:1830. |
[26] |
Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001,25:402-408.
doi: 10.1006/meth.2001.1262 |
[27] |
Berthet S, Demont-Caulet N, Pollet B, Bidzinski P, Cézard L, Bris P L, Borrega N, Hervé J, Blondet E, Balzergue S, Lapierre C, Jouanin L . Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. Plant Cell, 2011,23:1124-1137.
doi: 10.1105/tpc.110.082792 |
[28] |
Zhao Q, Nakashima J, Chen F, Yin Y B, Fu C X, Yun J F, Shao H, Wang X Q, Wang Z Y, Dixon R A . LACCASE is necessary and nonredundant with PEROXIDASE for lignin polymerization during vascular development in Arabidopsis. Plant Cell, 2013,25:3976-3987.
doi: 10.1105/tpc.113.117770 |
[29] |
Turlapati P V, Kim K W, Davin L B, Lewis N G . The laccase multigene family in Arabidopsis thaliana: towards addressing the mystery of their gene function(s). Planta, 2011,233:439-470.
doi: 10.1007/s00425-010-1298-3 |
[30] |
Szakasits D, Heinen P, Wieczorek K, Hofmann J, Wagner F, Kreil D P, Sykacek P, Grundler F M W, Bohlmann H . The transcriptome of syncytia induced by the cyst nematode Heterodera schachtii in Arabidopsis roots. Plant J, 2010,57:771-784.
doi: 10.1111/tpj.2009.57.issue-5 |
[31] |
Yang J, Zhang Y, Wang X F, Wang W Q, Li Z K, Wu J H, Wang G N, Wu L Q, Zhang G Y, Ma Z Y . HyPRP1 performs a role in negatively regulating cotton resistance to V. dahliae via the thickening of cell walls and ROS accumulation. BMC Plant Biol, 2018,18:339.
doi: 10.1186/s12870-018-1565-1 |
[32] |
Li F G, Fan G Y, Wang K B, Sun F M, Yuan Y L, Song G L, Li Q, Ma Z Y, Lu C R, Zou C S, Chen W B, Liang X M, Shang H H, Liu W Q, Shi C C, Xiao G H, Gou C Y, Ye W W, Xu X, Zhang X Y, Wei H L, Li Z F, Zhang G Y, Wang G Y, Liu K, Kohel R J, Percy R G, Yu J Z, Zhu Y X, Wang J, Yu S X . Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet, 2014,46:567-572.
doi: 10.1038/ng.2987 |
[33] |
Zhang T Z, Hu Y, Jiang W K, Fang L, Guan X Y, Chen J D, Zhang J B, Saski C A, Scheffler B E, Stelly D M, Hulse-Kemp A M, Wan Q, Liu B L, Liu C X, Wang S, Pan M Q, Wang Y K, Wang D, Ye W X, Chang L J, Zhang W P, Song Q X, Kirkbride R C, Chen X Y, Dennis E, Llewellyn D J, Peterson D G, Thaxton P, Jones D C, Wang Q, Xu X Y, Zhang H, Wu H T, Zhou L, Mei G F, Chen S Q, Tian Y, Xiang D, Li X H, Ding J, Zuo Q Y, Tao L N, Liu Y C, Li J, Lin Y, Hui Y Y, Cao Z S, Cai C P, Zhu X F, Jiang Z, Zhou B L, Guo W Z, Li R Q, Chen Z J . Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol, 2015,33:531-537.
doi: 10.1038/nbt.3207 |
[34] |
Chezem W R, Memon A, Li F S, Weng J K, Clay N . SG2-Type R2R3-MYB Transcription factor MYB15 controls defense- induced lignification and basal immunity in Arabidopsis. Plant Cell, 2017,29:1907-1926.
doi: 10.1105/tpc.16.00954 |
[35] |
Ye J, Zhong T, Zhang D, Ma C, Wang L, Yao L, Zhang Q, Zhu M, Xu M . The auxin-regulated protein ZmAuxRP1 coordinates the balance between root growth and stalk rot disease resistance in maize. Mol Plant, 2019,12:360-373.
doi: 10.1016/j.molp.2018.10.005 |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[3] | 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190. |
[4] | 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623. |
[5] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[6] | 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366. |
[7] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[8] | 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449. |
[9] | 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308. |
[10] | 马燕斌, 王霞, 李换丽, 王平, 张建诚, 文晋, 王新胜, 宋梅芳, 吴霞, 杨建平. 玉米光敏色素A1基因(ZmPHYA1)在棉花中的转化及分子鉴定[J]. 作物学报, 2021, 47(6): 1197-1202. |
[11] | 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析[J]. 作物学报, 2021, 47(5): 882-893. |
[12] | 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786. |
[13] | 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450. |
[14] | 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406. |
[15] | 李鹏, 刘彻, 宋皓, 姚盼盼, 苏沛霖, 魏跃伟, 杨永霞, 李青常. 烟草非特异性脂质转移蛋白基因家族的鉴定与分析[J]. 作物学报, 2021, 47(11): 2184-2198. |
|