作物学报 ›› 2019, Vol. 45 ›› Issue (12): 1773-1783.doi: 10.3724/SP.J.1006.2019.94040
• 作物遗传育种·种质资源·分子遗传学 • 下一篇
白晓璟1,廉小平2,王玉奎1,张贺翠1,刘倩莹1,左同鸿1,张以忠1,谢琴琴1,胡燈科1,任雪松2,曾静3,罗绍兰1,蒲敏1,朱利泉1,*()
Xiao-Jing BAI1,Xiao-Ping LIAN2,Yu-Kui WANG1,He-Cui ZHANG1,Qian-Ying LIU1,Tong- Hong ZUO1,Yi-Zhong ZHANG1,Qin-Qin XIE1,Deng-Ke HU1,Xue-Song REN2,Jing ZENG3,Shao-Lan LUO1,Min PU1,Li-Quan ZHU1,*()
摘要:
甘蓝自交不亲和性(self-incompatibility, SI)是柱头对相同单倍型的花粉产生的排斥或抑制反应。钙依赖蛋白激酶(calcium-dependent protein kinase, CDPK)是植物面对逆境信号时参与抗逆反应的重要元件。本文通过甘蓝自花授粉0~60 min的柱头转录组数据分析, 成功地筛选到一个受自花授粉诱导上调表达的基因BoCDPK14, 该基因与拟南芥中参与植物逆境信号传导的钙依赖蛋白激酶基因高度同源。BoCDPK14基因开放阅读框1599 bp, 编码一种具有533个氨基酸残基的亲水性蛋白, 可在大肠杆菌胞质中被诱导表达, 其相对分子质量为60.4 kD, 表明BoCDPK14为活性胞质蛋白。该基因起始密码子上游2000 bp的核苷酸序列中含有胁迫反应、激素反应、代谢调节等应答元件。BoCDPK14在甘蓝柱头、花粉、花蕾、花瓣和叶片中表达, 且柱头中的表达量低于花粉。荧光定量PCR结果证实, BoCDPK14在0~60 min的表达变化趋势与转录组分析结果一致。通过酵母双杂交发现, BoCDPK14蛋白激酶结构域与谷氨酸受体通道蛋白BoGLR2.8d存在相互作用, 表明BoCDPK14可能是参与SI反应过程的新蛋白。本研究结果表明BoCDPK14可能作为Ca 2+信号元件参与甘蓝柱头响应花粉刺激的分子过程, 这为甘蓝自交不亲和的进一步研究和利用提供了新内容。
[1] | Gu T, Mazzurco M, Sulaman W, Matias D D, Goring D R . Binding of an arm repeat protein to the kinase domain of the S-locus receptor kinase. Proc Natl Acad Sci USA, 1998,95:382-387. |
[2] | Vanoosthuyse V, Tichtinsky G, Dumas C, Gaude T, Cock J M . Interaction of calmodulin, a sorting nexin and kinase-associated protein phosphatase with the Brassica oleracea S locus receptor kinase. Plant Physiol, 2003,133:919-929. |
[3] | Stone S L, Anderson E M, Mullen R T, Goring D R . ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible Brassica pollen. Plant Cell, 2003,15:885-898. |
[4] | Nasrallah M E, Liu P, Nasrallah J B . Generation of self-incompatible Arabidopsis thaliana by transfer of two S locus genes from A. lyrata. Science, 2002,297:247-249. |
[5] | Nasrallah M, Liu P, Sherman-Broyles S, Boggs N, Nasrallah J . Natural variation in expression of self-incompatibility in Arabidopsis thaliana: implications for the evolution of selfing. Proc Natl Acad Sci USA, 2004,101:16070-16074. |
[6] | Nasrallah J B, Nasrallah M E . Robust self-incompatibility in the absence of a functional ARC1 gene in Arabidopsis thaliana. Plant Cell, 2014,26:3838-3841. |
[7] | Elleman C, Dickinson H G . Commonalities between pollen/ stigma and host/pathogen interactions: calcium accumulation during stigmatic penetration by Brassica oleracea pollen. Sexual Plant Reprod, 1999,12:94-202. |
[8] | Iwano M, Shiba H, Matoba K, Miwa T, Funato M, Entani T, Nakayama P, Shimosato H, Takaoka A, Isogai A . Actin dynamics in papilla cells of Brassica rapa during self and cross-pollination. Plant Physiol, 2007,144:72-81. |
[9] | Dearnaley J D W, Levina N N, Lew R R, Heath I B, Goring D R . Interrelationships between cytoplasmic Ca 2+ peaks, pollen hydration and plasma membrane conductances during compatible and incompatible pollinations of Brassica napus papillae. Plant Cell Physiol, 1997,38:985-999. |
[10] | Yang G, Shen S, Yang S, Komatsu S . OsCDPK13, a calcium-dependent protein kinase gene from rice, is induced in response to cold and gibberellin. Plant Physiol Biochem, 2003,41:369-374. |
[11] | Yoon G M, Cho H S, Ha H J, Liu J R, Lee H S P . Characterization of NtCDPK1, a calcium-dependent protein kinase gene in Nicotiana tabacum, and the activity of its encoded protein. Plant Mol Biol, 1999,39:991-1001. |
[12] | Ye S, Wang L, Xie W, Wan B, Li X, Lin Y . Expression profile of calcium-dependent protein kinase (CDPKs) genes during the whole lifespan and under phytohormone treatment conditions in rice (Oryza sativa L. ssp. indica). Plant Mol Biol, 2009,70:311-325. |
[13] | Chotikacharoensuk T, Arteca R N, Arteca J M . Use of differential display for the identification of touch-induced genes from an ethylene-insensitive Arabidopsis mutant and partial characterization of these genes. J Plant Physiol, 2006,163:1305-1320. |
[14] | Skelton N J, Kördel J, Akke M, Chazin W . Signal transduction versus buffering activity in Ca 2+-binding proteins . Nat Struct Biol, 1994,1:239-245. |
[15] | Ikura M . Calcium binding and conformational response in EF- hand proteins. Trends Biochem Sci, 1996,21:14-17. |
[16] | Kretsinger R H . EF-hands embrace. Nat Struct Biol, 1997,4:514-516. |
[17] | Hrabak E M, Chan C W, Gribskov M, Harper J F, Choi J H, Halford N, Kudla J, Luan S, Nimmo H G, Sussman M R . The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol, 2003,132:666-680. |
[18] | Rutschmann F, Stalder U, Piotrowski M, Oecking C, Schaller A . LeCPK1, a calcium-dependent protein kinase from tomato. Plasma membrane targeting and biochemical characterization. Plant Physiol, 2002,129:156-168. |
[19] | Iwano M, Ito K, Fujii S, Kakita M, Asano-Shimosato H, Igarashi M, Kaothien-Nakayama P, Entani T, Kanatani A, Takehisa M . Calcium signalling mediates self-incompatibility response in the Brassicaceae. Nature Plants, 2015,1:15128. |
[20] | 许俊强, 孙梓健, 宋明, 汤青林, 王志敏, 王小佳 . 甘蓝花粉管钙感应蛋白CaM与SRK相互作用研究. 园艺学报, 2013,40:2429-2440. |
Xu J Q, Sun Z J, Song M, Tang Q L, Wang Z M, Wang X J . Studies on the interactions between the pollen tube. calmodulin (CaM) and SRK from Brassica oleracea var. capitata. Acta Hortic Sin, 2013,40:2429-2440 (in Chinese with English abstract). | |
[21] | Sheen J . Ca 2+-dependent protein kinases and stress signal transduction in plants . Science, 1996,274:1900-1902. |
[22] | Botella J R, Arteca J M, Somodevilla M, Arteca R N . Calcium-dependent protein kinase gene expression in response to physical and chemical stimuli in mungbean (Vigna radiata). Plant Mol Biol, 1996,30:1129-1137. |
[23] | 岳尧 . 基于转录组数据的甘蓝型油菜自交不亲和相关基因的挖掘. 华中农业大学硕士学位论文, 湖北武汉, 2016. |
Yue Y . The Mining of Brassica napus Self-incompatibility Related Gene Based on RNA-Seq. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2016 (in Chinese with English abstract). | |
[24] | Messerli M A, Creton R, Jaffe L F, Robinson K R . Periodic increases in elongation rate precede increases in cytosolic Ca 2+ during pollen tube growth . Dev Biol, 2000,222:84-98. |
[25] | Hamel L P, Sheen J, Seguin A . Ancient signals: comparative genomics of green plant CDPKs. Trends Plant Sci, 2014,19:79-89. |
[26] | Kunz C, Chang A, Faure J D, Clarke A E, Polya G M, Anderson M A . Phosphorylation of style S-RNases by Ca 2+ dependent protein kinases from pollen tubes . Sexual Plant Reprod, 1996,9:25-34. |
[27] | Kim S A, Kwak J, Jae S K, Wang M H, Nam H . Overexpression of the AtGluR2 gene encoding an Arabidopsis homolog of mammalian glutamate receptors impairs calcium utilization and sensitivity to ionic stress in transgenic plants. Plant Cell Physiol, 2001,42:74-84. |
[28] | Dubos C, Huggins D, Grant G H, Knight M R, Campbell M M . A role for glycine in the gating of plant NMDA-like receptors. Plant J, 2003,35:800-810. |
[29] | Kang S, Kim H B, Lee H, Choi J Y, Heu S, Oh C J, Kwon S I, An C S . Overexpression in Arabidopsis of a plasma membrane-targeting glutamate receptor from small radish increases glutamate-mediated Ca 2+ influx and delays fungal infection. Mol Cells , 2006,21:418-427. |
[30] | Qi Z, Stephens N R, Spalding E P . Calcium entry mediated by GLR3.3, an Arabidopsis glutamate receptor with a broad agonist profile. Plant Physiol, 2006,142:963-971. |
[31] | Cho D, Kim S A, Murata Y, Lee S, Jae S K, Nam H G, Kwak J M . De-regulated expression of the plant glutamate receptor homolog AtGLR3.1 impairs long-term Ca 2+-programmed stomatal closure . Plant J, 2009,58:437-449. |
[32] | Vincill E D, Bieck A M, Spalding E P . Ca 2+ conduction by an amino acid-gated ion channel related to glutamate receptors . Plant Physiol, 2012,159:40-46. |
[33] | Michard E, Lima P T, Borges F, Silva A C, Portes M T, Carvalho J E, Gilliham M, Liu L H, Obermeyer G, Feijó J A . Glutamate receptor-like genes form Ca 2+ channels in pollen tubes and are regulated by pistil D-serine . Science, 2011,332:434-437. |
[34] | 何明洁, 孙伊辰, 程晓园, 时冬雪, 李迪秦, 陈益银, 冯永坤, 刘璐, 范腾飞, 杨超, 曹凤秋, 刘来华 . 植物谷氨酸受体的研究进展. 植物学报, 2016,51:827-840. |
He M J, Sun Y C, Cheng X Y, Shi D X, Li D Q, Chen Y Y, Feng Y K, Liu L, Fan T F, Yang C, Cao F Q, Liu L H . Current research advances on glutamate receptors (GLRs) in Plants. Chin Bull Bot, 2016,51:827-840 (in Chinese with English abstract). | |
[35] | Jiang J, Jiang J, Qiu L, Miao Y, Yao L, Cao J . Identification of gene expression profile during fertilization in Brassica campestris subsp. chinensis. Genome, 2012,56:39-48. |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[3] | 张以忠, 曾文艺, 邓琳琼, 张贺翠, 刘倩莹, 左同鸿, 谢琴琴, 胡燈科, 袁崇墨, 廉小平, 朱利泉. 甘蓝S-位点基因SRK、SLG和SP11/SCR密码子偏好性分析[J]. 作物学报, 2022, 48(5): 1152-1168. |
[4] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[5] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[6] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[7] | 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120. |
[8] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[9] | 左香君, 房朋朋, 李加纳, 钱伟, 梅家琴. 有毛野生甘蓝(Brassica incana)抗蚜虫特性研究[J]. 作物学报, 2021, 47(6): 1109-1113. |
[10] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
[11] | 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990. |
[12] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
[13] | 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637. |
[14] | 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659. |
[15] | 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426. |
|